RcDT: Privacy Preservation Based on R-Constrained Dummy Trajectory in Mobile Social Networks
The boom of mobile devices and location-based services (LBSs) greatly enriches the mobile social network (MSN) applications, which bring convenience to our daily life and, meanwhile, raise serious privacy concerns due to the potential disclosure risk of location privacy. Besides the single-location...
Enregistré dans:
Auteurs principaux: | Jinquan Zhang, Xiao Wang, Yanfeng Yuan, Lina Ni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cfb7d0c475e14e1e92cc131bde246fc8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Review: Privacy-Preservation in the Context of Natural Language Processing
par: Darshini Mahendran, et autres
Publié: (2021) -
Location privacy protection scheme for LBS users based ondifferential privacy
par: Naiwen YU, et autres
Publié: (2021) -
Privacy-Preserving Computation for Large-Scale Security-Constrained Optimal Power Flow Problem in Smart Grid
par: Xiangyu Niu, et autres
Publié: (2021) -
Sport Location-Based User Clustering With Privacy-Preservation in Wireless IoT-Driven Healthcare
par: Qiyun Zhang, et autres
Publié: (2021) -
Differential Privacy for IoT-Enabled Critical Infrastructure: A Comprehensive Survey
par: Muhammad Akbar Husnoo, et autres
Publié: (2021)