A genome-wide scan statistic framework for whole-genome sequence data analysis
Whole-genome sequencing data reveals a large number of variants for testing their associations with phenotypic traits and diseases. Here, the authors develop WGScan, a statistical method for detecting the existence and estimating the locations of the association signal at genome-wide scale.
Guardado en:
Autores principales: | Zihuai He, Bin Xu, Joseph Buxbaum, Iuliana Ionita-Laza |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cfcd75a1d56442cbae3938a44f874184 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of putative causal loci in whole-genome sequencing data via knockoff statistics
por: Zihuai He, et al.
Publicado: (2021) -
On quality control measures in genome-wide association studies: a test to assess the genotyping quality of individual probands in family-based association studies and an application to the HapMap data.
por: David W Fardo, et al.
Publicado: (2009) -
Framework for quality assessment of whole genome cancer sequences
por: Justin P. Whalley, et al.
Publicado: (2020) -
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs
por: Zihuai He, et al.
Publicado: (2018) -
In silico whole genome association scan for murine prepulse inhibition.
por: Bradley Todd Webb, et al.
Publicado: (2009)