Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
Improving inference in large-scale genetic data linked to electronic medical record data requires the development of novel computationally efficient regression methods. Here, the authors develop a Bayesian approach for association analyses to improve SNP-heritability estimation, discovery, fine-mapp...
Guardado en:
Autores principales: | Marion Patxot, Daniel Trejo Banos, Athanasios Kousathanas, Etienne J. Orliac, Sven E. Ojavee, Gerhard Moser, Alexander Holloway, Julia Sidorenko, Zoltan Kutalik, Reedik Mägi, Peter M. Visscher, Lars Rönnegård, Matthew R. Robinson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d0005592df464e3ea0bdfbf2ebf8a4d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis
por: Sven E. Ojavee, et al.
Publicado: (2021) -
Probabilistic phylogenetic inference with insertions and deletions.
por: Elena Rivas, et al.
Publicado: (2008) -
On the origins of suboptimality in human probabilistic inference.
por: Luigi Acerbi, et al.
Publicado: (2014) -
Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback
por: A. Emin Orhan, et al.
Publicado: (2017) -
Neural substrates of cognitive biases during probabilistic inference
por: Alireza Soltani, et al.
Publicado: (2016)