In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization

Biological organic-inorganic materials, such as self-assembling metal-reinforced mussel holdfast threads, remain a popular source of inspiration for materials design and engineering. Here the authors show that metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sungjin Kim, Abigail U. Regitsky, Jake Song, Jan Ilavsky, Gareth H. McKinley, Niels Holten-Andersen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d009dc9a5121462080897ecea9740d49
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d009dc9a5121462080897ecea9740d49
record_format dspace
spelling oai:doaj.org-article:d009dc9a5121462080897ecea9740d492021-12-02T13:24:04ZIn situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization10.1038/s41467-021-20953-72041-1723https://doaj.org/article/d009dc9a5121462080897ecea9740d492021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-20953-7https://doaj.org/toc/2041-1723Biological organic-inorganic materials, such as self-assembling metal-reinforced mussel holdfast threads, remain a popular source of inspiration for materials design and engineering. Here the authors show that metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization.Sungjin KimAbigail U. RegitskyJake SongJan IlavskyGareth H. McKinleyNiels Holten-AndersenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sungjin Kim
Abigail U. Regitsky
Jake Song
Jan Ilavsky
Gareth H. McKinley
Niels Holten-Andersen
In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
description Biological organic-inorganic materials, such as self-assembling metal-reinforced mussel holdfast threads, remain a popular source of inspiration for materials design and engineering. Here the authors show that metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization.
format article
author Sungjin Kim
Abigail U. Regitsky
Jake Song
Jan Ilavsky
Gareth H. McKinley
Niels Holten-Andersen
author_facet Sungjin Kim
Abigail U. Regitsky
Jake Song
Jan Ilavsky
Gareth H. McKinley
Niels Holten-Andersen
author_sort Sungjin Kim
title In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
title_short In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
title_full In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
title_fullStr In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
title_full_unstemmed In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
title_sort in situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d009dc9a5121462080897ecea9740d49
work_keys_str_mv AT sungjinkim insitumechanicalreinforcementofpolymerhydrogelsviametalcoordinatedcrosslinkmineralization
AT abigailuregitsky insitumechanicalreinforcementofpolymerhydrogelsviametalcoordinatedcrosslinkmineralization
AT jakesong insitumechanicalreinforcementofpolymerhydrogelsviametalcoordinatedcrosslinkmineralization
AT janilavsky insitumechanicalreinforcementofpolymerhydrogelsviametalcoordinatedcrosslinkmineralization
AT garethhmckinley insitumechanicalreinforcementofpolymerhydrogelsviametalcoordinatedcrosslinkmineralization
AT nielsholtenandersen insitumechanicalreinforcementofpolymerhydrogelsviametalcoordinatedcrosslinkmineralization
_version_ 1718393181420126208