FISSA: A neuropil decontamination toolbox for calcium imaging signals

Abstract In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sander W. Keemink, Scott C. Lowe, Janelle M. P. Pakan, Evelyn Dylda, Mark C. W. van Rossum, Nathalie L. Rochefort
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d00c1fe9dd304ffba9288039c690613b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d00c1fe9dd304ffba9288039c690613b
record_format dspace
spelling oai:doaj.org-article:d00c1fe9dd304ffba9288039c690613b2021-12-02T15:08:57ZFISSA: A neuropil decontamination toolbox for calcium imaging signals10.1038/s41598-018-21640-22045-2322https://doaj.org/article/d00c1fe9dd304ffba9288039c690613b2018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21640-2https://doaj.org/toc/2045-2322Abstract In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regions of interest (ROIs), and extraction of fluorescence traces from each ROI. Out of focus fluorescence from surrounding neuropil and other cells can strongly contaminate the signal assigned to a given ROI. In this study, we introduce the FISSA toolbox (Fast Image Signal Separation Analysis) for neuropil decontamination. Given pre-defined ROIs, the FISSA toolbox automatically extracts the surrounding local neuropil and performs blind-source separation with non-negative matrix factorization. Using both simulated and in vivo data, we show that this toolbox performs similarly or better than existing published methods. FISSA requires only little RAM, and allows for fast processing of large datasets even on a standard laptop. The FISSA toolbox is available in Python, with an option for MATLAB format outputs, and can easily be integrated into existing workflows. It is available from Github and the standard Python repositories.Sander W. KeeminkScott C. LoweJanelle M. P. PakanEvelyn DyldaMark C. W. van RossumNathalie L. RochefortNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sander W. Keemink
Scott C. Lowe
Janelle M. P. Pakan
Evelyn Dylda
Mark C. W. van Rossum
Nathalie L. Rochefort
FISSA: A neuropil decontamination toolbox for calcium imaging signals
description Abstract In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regions of interest (ROIs), and extraction of fluorescence traces from each ROI. Out of focus fluorescence from surrounding neuropil and other cells can strongly contaminate the signal assigned to a given ROI. In this study, we introduce the FISSA toolbox (Fast Image Signal Separation Analysis) for neuropil decontamination. Given pre-defined ROIs, the FISSA toolbox automatically extracts the surrounding local neuropil and performs blind-source separation with non-negative matrix factorization. Using both simulated and in vivo data, we show that this toolbox performs similarly or better than existing published methods. FISSA requires only little RAM, and allows for fast processing of large datasets even on a standard laptop. The FISSA toolbox is available in Python, with an option for MATLAB format outputs, and can easily be integrated into existing workflows. It is available from Github and the standard Python repositories.
format article
author Sander W. Keemink
Scott C. Lowe
Janelle M. P. Pakan
Evelyn Dylda
Mark C. W. van Rossum
Nathalie L. Rochefort
author_facet Sander W. Keemink
Scott C. Lowe
Janelle M. P. Pakan
Evelyn Dylda
Mark C. W. van Rossum
Nathalie L. Rochefort
author_sort Sander W. Keemink
title FISSA: A neuropil decontamination toolbox for calcium imaging signals
title_short FISSA: A neuropil decontamination toolbox for calcium imaging signals
title_full FISSA: A neuropil decontamination toolbox for calcium imaging signals
title_fullStr FISSA: A neuropil decontamination toolbox for calcium imaging signals
title_full_unstemmed FISSA: A neuropil decontamination toolbox for calcium imaging signals
title_sort fissa: a neuropil decontamination toolbox for calcium imaging signals
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/d00c1fe9dd304ffba9288039c690613b
work_keys_str_mv AT sanderwkeemink fissaaneuropildecontaminationtoolboxforcalciumimagingsignals
AT scottclowe fissaaneuropildecontaminationtoolboxforcalciumimagingsignals
AT janellemppakan fissaaneuropildecontaminationtoolboxforcalciumimagingsignals
AT evelyndylda fissaaneuropildecontaminationtoolboxforcalciumimagingsignals
AT markcwvanrossum fissaaneuropildecontaminationtoolboxforcalciumimagingsignals
AT nathalielrochefort fissaaneuropildecontaminationtoolboxforcalciumimagingsignals
_version_ 1718387967444123648