Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique

Introduction. Early detection of visual symptoms in pterygium patients is crucial as the progression of the disease can cause visual disruption and contribute to visual impairment. Best-corrected visual acuity (BCVA) and corneal astigmatism influence the degree of visual impairment due to direct inv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fatin Nabihah Jais, Mohd Zulfaezal Che Azemin, Mohd Radzi Hilmi, Mohd Izzuddin Mohd Tamrin, Khairidzan Mohd Kamal
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
T
R
Q
Acceso en línea:https://doaj.org/article/d00da79909a3453bbe4a9f43ff947a5c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d00da79909a3453bbe4a9f43ff947a5c
record_format dspace
spelling oai:doaj.org-article:d00da79909a3453bbe4a9f43ff947a5c2021-11-29T00:55:41ZPostsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique1537-744X10.1155/2021/6211006https://doaj.org/article/d00da79909a3453bbe4a9f43ff947a5c2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/6211006https://doaj.org/toc/1537-744XIntroduction. Early detection of visual symptoms in pterygium patients is crucial as the progression of the disease can cause visual disruption and contribute to visual impairment. Best-corrected visual acuity (BCVA) and corneal astigmatism influence the degree of visual impairment due to direct invasion of fibrovascular tissue into the cornea. However, there were different characteristics of pterygium used to evaluate the severity of visual impairment, including fleshiness, size, length, and redness. The innovation of machine learning technology in visual science may contribute to developing a highly accurate predictive analytics model of BCVA outcomes in postsurgery pterygium patients. Aim. To produce an accurate model of BCVA changes of postpterygium surgery according to its morphological characteristics by using the machine learning technique. Methodology. A retrospective of the secondary dataset of 93 samples of pterygium patients with different pterygium attributes was used and imported into four different machine learning algorithms in RapidMiner software to predict the improvement of BCVA after pterygium surgery. Results. The performance of four machine learning techniques were evaluated, and it showed the support vector machine (SVM) model had the highest average accuracy (94.44% ± 5.86%), specificity (100%), and sensitivity (92.14% ± 8.33%). Conclusion. Machine learning algorithms can produce a highly accurate postsurgery classification model of BCVA changes using pterygium characteristics.Fatin Nabihah JaisMohd Zulfaezal Che AzeminMohd Radzi HilmiMohd Izzuddin Mohd TamrinKhairidzan Mohd KamalHindawi LimitedarticleTechnologyTMedicineRScienceQENThe Scientific World Journal, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Technology
T
Medicine
R
Science
Q
spellingShingle Technology
T
Medicine
R
Science
Q
Fatin Nabihah Jais
Mohd Zulfaezal Che Azemin
Mohd Radzi Hilmi
Mohd Izzuddin Mohd Tamrin
Khairidzan Mohd Kamal
Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique
description Introduction. Early detection of visual symptoms in pterygium patients is crucial as the progression of the disease can cause visual disruption and contribute to visual impairment. Best-corrected visual acuity (BCVA) and corneal astigmatism influence the degree of visual impairment due to direct invasion of fibrovascular tissue into the cornea. However, there were different characteristics of pterygium used to evaluate the severity of visual impairment, including fleshiness, size, length, and redness. The innovation of machine learning technology in visual science may contribute to developing a highly accurate predictive analytics model of BCVA outcomes in postsurgery pterygium patients. Aim. To produce an accurate model of BCVA changes of postpterygium surgery according to its morphological characteristics by using the machine learning technique. Methodology. A retrospective of the secondary dataset of 93 samples of pterygium patients with different pterygium attributes was used and imported into four different machine learning algorithms in RapidMiner software to predict the improvement of BCVA after pterygium surgery. Results. The performance of four machine learning techniques were evaluated, and it showed the support vector machine (SVM) model had the highest average accuracy (94.44% ± 5.86%), specificity (100%), and sensitivity (92.14% ± 8.33%). Conclusion. Machine learning algorithms can produce a highly accurate postsurgery classification model of BCVA changes using pterygium characteristics.
format article
author Fatin Nabihah Jais
Mohd Zulfaezal Che Azemin
Mohd Radzi Hilmi
Mohd Izzuddin Mohd Tamrin
Khairidzan Mohd Kamal
author_facet Fatin Nabihah Jais
Mohd Zulfaezal Che Azemin
Mohd Radzi Hilmi
Mohd Izzuddin Mohd Tamrin
Khairidzan Mohd Kamal
author_sort Fatin Nabihah Jais
title Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique
title_short Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique
title_full Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique
title_fullStr Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique
title_full_unstemmed Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique
title_sort postsurgery classification of best-corrected visual acuity changes based on pterygium characteristics using the machine learning technique
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/d00da79909a3453bbe4a9f43ff947a5c
work_keys_str_mv AT fatinnabihahjais postsurgeryclassificationofbestcorrectedvisualacuitychangesbasedonpterygiumcharacteristicsusingthemachinelearningtechnique
AT mohdzulfaezalcheazemin postsurgeryclassificationofbestcorrectedvisualacuitychangesbasedonpterygiumcharacteristicsusingthemachinelearningtechnique
AT mohdradzihilmi postsurgeryclassificationofbestcorrectedvisualacuitychangesbasedonpterygiumcharacteristicsusingthemachinelearningtechnique
AT mohdizzuddinmohdtamrin postsurgeryclassificationofbestcorrectedvisualacuitychangesbasedonpterygiumcharacteristicsusingthemachinelearningtechnique
AT khairidzanmohdkamal postsurgeryclassificationofbestcorrectedvisualacuitychangesbasedonpterygiumcharacteristicsusingthemachinelearningtechnique
_version_ 1718407798083026944