Control of an AMB to zero static force

Some active magnetic bearing (AMB) applications require that the mean, or static force exerted by the AMB is zero. Examples include hybrid fluid film - AMB bearing pairings, rotor midspan dampers, and statically indeterminant systems with stiff rotors and more than two radial AMBs. When the position...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael CAPLE, Eric MASLEN, Jacquelyn NAGEL, Jacob WILD
Formato: article
Lenguaje:EN
Publicado: The Japan Society of Mechanical Engineers 2017
Materias:
Acceso en línea:https://doaj.org/article/d0147c3da4f9422e9de65a910c38a593
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d0147c3da4f9422e9de65a910c38a593
record_format dspace
spelling oai:doaj.org-article:d0147c3da4f9422e9de65a910c38a5932021-11-26T07:11:27ZControl of an AMB to zero static force2187-974510.1299/mej.17-00012https://doaj.org/article/d0147c3da4f9422e9de65a910c38a5932017-09-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/4/5/4_17-00012/_pdf/-char/enhttps://doaj.org/toc/2187-9745Some active magnetic bearing (AMB) applications require that the mean, or static force exerted by the AMB is zero. Examples include hybrid fluid film - AMB bearing pairings, rotor midspan dampers, and statically indeterminant systems with stiff rotors and more than two radial AMBs. When the position of the rotor relative to magnetic center is not known precisely, this zero force requirement can be hard to meet. A low frequency periodic biasing scheme is developed which enables a controller to detect non-zero static force by sensing rotor motion at the bias carrier frequency. A theoretical basis establishes feasibility but also the potential for coupling between control signals and the periodic bias. Simulation demonstrates that an ad-hoc bias adaptation scheme can successfully drive the static component to zero while permitting otherwise conventional control. Experimental results on a small, single DOF test rig further demonstrate the ability to drive the AMB static force to zero while adding damping to the system. Identification of the system stability boundary provides insight on the structural requirements (mechanical stiffness versus magnetic negative stiffness) and the limitations on the control gain for the biasing scheme to workMichael CAPLEEric MASLENJacquelyn NAGELJacob WILDThe Japan Society of Mechanical Engineersarticleperiodic controlbiasingamb damperzero static forcebias linearizationMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 4, Iss 5, Pp 17-00012-17-00012 (2017)
institution DOAJ
collection DOAJ
language EN
topic periodic control
biasing
amb damper
zero static force
bias linearization
Mechanical engineering and machinery
TJ1-1570
spellingShingle periodic control
biasing
amb damper
zero static force
bias linearization
Mechanical engineering and machinery
TJ1-1570
Michael CAPLE
Eric MASLEN
Jacquelyn NAGEL
Jacob WILD
Control of an AMB to zero static force
description Some active magnetic bearing (AMB) applications require that the mean, or static force exerted by the AMB is zero. Examples include hybrid fluid film - AMB bearing pairings, rotor midspan dampers, and statically indeterminant systems with stiff rotors and more than two radial AMBs. When the position of the rotor relative to magnetic center is not known precisely, this zero force requirement can be hard to meet. A low frequency periodic biasing scheme is developed which enables a controller to detect non-zero static force by sensing rotor motion at the bias carrier frequency. A theoretical basis establishes feasibility but also the potential for coupling between control signals and the periodic bias. Simulation demonstrates that an ad-hoc bias adaptation scheme can successfully drive the static component to zero while permitting otherwise conventional control. Experimental results on a small, single DOF test rig further demonstrate the ability to drive the AMB static force to zero while adding damping to the system. Identification of the system stability boundary provides insight on the structural requirements (mechanical stiffness versus magnetic negative stiffness) and the limitations on the control gain for the biasing scheme to work
format article
author Michael CAPLE
Eric MASLEN
Jacquelyn NAGEL
Jacob WILD
author_facet Michael CAPLE
Eric MASLEN
Jacquelyn NAGEL
Jacob WILD
author_sort Michael CAPLE
title Control of an AMB to zero static force
title_short Control of an AMB to zero static force
title_full Control of an AMB to zero static force
title_fullStr Control of an AMB to zero static force
title_full_unstemmed Control of an AMB to zero static force
title_sort control of an amb to zero static force
publisher The Japan Society of Mechanical Engineers
publishDate 2017
url https://doaj.org/article/d0147c3da4f9422e9de65a910c38a593
work_keys_str_mv AT michaelcaple controlofanambtozerostaticforce
AT ericmaslen controlofanambtozerostaticforce
AT jacquelynnagel controlofanambtozerostaticforce
AT jacobwild controlofanambtozerostaticforce
_version_ 1718409745499422720