Generalized split null point of sum of monotone operators in Hilbert spaces

In this paper, we introduce a new type of a generalized split monotone variational inclusion (GSMVI) problem in the framework of real Hilbert spaces. By incorporating an inertial extrapolation method and an Halpern iterative technique, we establish a strong convergence result for approximating a sol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mebawondu Akindele A., Abass Hammed A., Oyewole Olalwale K., Aremu Kazeem O., Narain Ojen K.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/d01c36561d1f4b01a47954106af160f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d01c36561d1f4b01a47954106af160f7
record_format dspace
spelling oai:doaj.org-article:d01c36561d1f4b01a47954106af160f72021-12-05T14:10:45ZGeneralized split null point of sum of monotone operators in Hilbert spaces2391-466110.1515/dema-2021-0034https://doaj.org/article/d01c36561d1f4b01a47954106af160f72021-11-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0034https://doaj.org/toc/2391-4661In this paper, we introduce a new type of a generalized split monotone variational inclusion (GSMVI) problem in the framework of real Hilbert spaces. By incorporating an inertial extrapolation method and an Halpern iterative technique, we establish a strong convergence result for approximating a solution of GSMVI and fixed point problems of certain nonlinear mappings in the framework of real Hilbert spaces. Many existing results are derived as corollaries to our main result. Furthermore, we present a numerical example to support our main result and propose an open problem for interested researchers in this area. The result obtained in this paper improves and generalizes many existing results in the literature.Mebawondu Akindele A.Abass Hammed A.Oyewole Olalwale K.Aremu Kazeem O.Narain Ojen K.De Gruyterarticlegeneralized split monotone variational inclusioninertial iterative schemefirmly nonexpansivefixed point problem47h0647h0947j0547j25MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 359-376 (2021)
institution DOAJ
collection DOAJ
language EN
topic generalized split monotone variational inclusion
inertial iterative scheme
firmly nonexpansive
fixed point problem
47h06
47h09
47j05
47j25
Mathematics
QA1-939
spellingShingle generalized split monotone variational inclusion
inertial iterative scheme
firmly nonexpansive
fixed point problem
47h06
47h09
47j05
47j25
Mathematics
QA1-939
Mebawondu Akindele A.
Abass Hammed A.
Oyewole Olalwale K.
Aremu Kazeem O.
Narain Ojen K.
Generalized split null point of sum of monotone operators in Hilbert spaces
description In this paper, we introduce a new type of a generalized split monotone variational inclusion (GSMVI) problem in the framework of real Hilbert spaces. By incorporating an inertial extrapolation method and an Halpern iterative technique, we establish a strong convergence result for approximating a solution of GSMVI and fixed point problems of certain nonlinear mappings in the framework of real Hilbert spaces. Many existing results are derived as corollaries to our main result. Furthermore, we present a numerical example to support our main result and propose an open problem for interested researchers in this area. The result obtained in this paper improves and generalizes many existing results in the literature.
format article
author Mebawondu Akindele A.
Abass Hammed A.
Oyewole Olalwale K.
Aremu Kazeem O.
Narain Ojen K.
author_facet Mebawondu Akindele A.
Abass Hammed A.
Oyewole Olalwale K.
Aremu Kazeem O.
Narain Ojen K.
author_sort Mebawondu Akindele A.
title Generalized split null point of sum of monotone operators in Hilbert spaces
title_short Generalized split null point of sum of monotone operators in Hilbert spaces
title_full Generalized split null point of sum of monotone operators in Hilbert spaces
title_fullStr Generalized split null point of sum of monotone operators in Hilbert spaces
title_full_unstemmed Generalized split null point of sum of monotone operators in Hilbert spaces
title_sort generalized split null point of sum of monotone operators in hilbert spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/d01c36561d1f4b01a47954106af160f7
work_keys_str_mv AT mebawonduakindelea generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces
AT abasshammeda generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces
AT oyewoleolalwalek generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces
AT aremukazeemo generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces
AT narainojenk generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces
_version_ 1718371770576142336