Generalized split null point of sum of monotone operators in Hilbert spaces
In this paper, we introduce a new type of a generalized split monotone variational inclusion (GSMVI) problem in the framework of real Hilbert spaces. By incorporating an inertial extrapolation method and an Halpern iterative technique, we establish a strong convergence result for approximating a sol...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d01c36561d1f4b01a47954106af160f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d01c36561d1f4b01a47954106af160f7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d01c36561d1f4b01a47954106af160f72021-12-05T14:10:45ZGeneralized split null point of sum of monotone operators in Hilbert spaces2391-466110.1515/dema-2021-0034https://doaj.org/article/d01c36561d1f4b01a47954106af160f72021-11-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0034https://doaj.org/toc/2391-4661In this paper, we introduce a new type of a generalized split monotone variational inclusion (GSMVI) problem in the framework of real Hilbert spaces. By incorporating an inertial extrapolation method and an Halpern iterative technique, we establish a strong convergence result for approximating a solution of GSMVI and fixed point problems of certain nonlinear mappings in the framework of real Hilbert spaces. Many existing results are derived as corollaries to our main result. Furthermore, we present a numerical example to support our main result and propose an open problem for interested researchers in this area. The result obtained in this paper improves and generalizes many existing results in the literature.Mebawondu Akindele A.Abass Hammed A.Oyewole Olalwale K.Aremu Kazeem O.Narain Ojen K.De Gruyterarticlegeneralized split monotone variational inclusioninertial iterative schemefirmly nonexpansivefixed point problem47h0647h0947j0547j25MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 359-376 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
generalized split monotone variational inclusion inertial iterative scheme firmly nonexpansive fixed point problem 47h06 47h09 47j05 47j25 Mathematics QA1-939 |
spellingShingle |
generalized split monotone variational inclusion inertial iterative scheme firmly nonexpansive fixed point problem 47h06 47h09 47j05 47j25 Mathematics QA1-939 Mebawondu Akindele A. Abass Hammed A. Oyewole Olalwale K. Aremu Kazeem O. Narain Ojen K. Generalized split null point of sum of monotone operators in Hilbert spaces |
description |
In this paper, we introduce a new type of a generalized split monotone variational inclusion (GSMVI) problem in the framework of real Hilbert spaces. By incorporating an inertial extrapolation method and an Halpern iterative technique, we establish a strong convergence result for approximating a solution of GSMVI and fixed point problems of certain nonlinear mappings in the framework of real Hilbert spaces. Many existing results are derived as corollaries to our main result. Furthermore, we present a numerical example to support our main result and propose an open problem for interested researchers in this area. The result obtained in this paper improves and generalizes many existing results in the literature. |
format |
article |
author |
Mebawondu Akindele A. Abass Hammed A. Oyewole Olalwale K. Aremu Kazeem O. Narain Ojen K. |
author_facet |
Mebawondu Akindele A. Abass Hammed A. Oyewole Olalwale K. Aremu Kazeem O. Narain Ojen K. |
author_sort |
Mebawondu Akindele A. |
title |
Generalized split null point of sum of monotone operators in Hilbert spaces |
title_short |
Generalized split null point of sum of monotone operators in Hilbert spaces |
title_full |
Generalized split null point of sum of monotone operators in Hilbert spaces |
title_fullStr |
Generalized split null point of sum of monotone operators in Hilbert spaces |
title_full_unstemmed |
Generalized split null point of sum of monotone operators in Hilbert spaces |
title_sort |
generalized split null point of sum of monotone operators in hilbert spaces |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/d01c36561d1f4b01a47954106af160f7 |
work_keys_str_mv |
AT mebawonduakindelea generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces AT abasshammeda generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces AT oyewoleolalwalek generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces AT aremukazeemo generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces AT narainojenk generalizedsplitnullpointofsumofmonotoneoperatorsinhilbertspaces |
_version_ |
1718371770576142336 |