A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network

This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bibo Dai, Yunmin Wang, Chunyang Ye, Qihang Li, Canming Yuan, Song Lu, Yuyang Li
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d0297fcc3af344cda65647cd13742d37
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d0297fcc3af344cda65647cd13742d37
record_format dspace
spelling oai:doaj.org-article:d0297fcc3af344cda65647cd13742d372021-12-03T07:14:52ZA Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network2296-646310.3389/feart.2021.785476https://doaj.org/article/d0297fcc3af344cda65647cd13742d372021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/feart.2021.785476/fullhttps://doaj.org/toc/2296-6463This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compared to U-Net and mainstream superpixel method, evaluation indicators of DSC, VOE and RVD verify the high recognition accuracy and strong robustness of our method.Bibo DaiBibo DaiBibo DaiYunmin WangYunmin WangChunyang YeQihang LiCanming YuanSong LuSong LuYuyang LiFrontiers Media S.A.articlelandslideU-Net neural networksuperpixel methodpoint cloudevaluation indicatorsScienceQENFrontiers in Earth Science, Vol 9 (2021)
institution DOAJ
collection DOAJ
language EN
topic landslide
U-Net neural network
superpixel method
point cloud
evaluation indicators
Science
Q
spellingShingle landslide
U-Net neural network
superpixel method
point cloud
evaluation indicators
Science
Q
Bibo Dai
Bibo Dai
Bibo Dai
Yunmin Wang
Yunmin Wang
Chunyang Ye
Qihang Li
Canming Yuan
Song Lu
Song Lu
Yuyang Li
A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
description This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compared to U-Net and mainstream superpixel method, evaluation indicators of DSC, VOE and RVD verify the high recognition accuracy and strong robustness of our method.
format article
author Bibo Dai
Bibo Dai
Bibo Dai
Yunmin Wang
Yunmin Wang
Chunyang Ye
Qihang Li
Canming Yuan
Song Lu
Song Lu
Yuyang Li
author_facet Bibo Dai
Bibo Dai
Bibo Dai
Yunmin Wang
Yunmin Wang
Chunyang Ye
Qihang Li
Canming Yuan
Song Lu
Song Lu
Yuyang Li
author_sort Bibo Dai
title A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
title_short A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
title_full A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
title_fullStr A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
title_full_unstemmed A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
title_sort novel method for extracting time series information of deformation area of a single landslide based on improved u-net neural network
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/d0297fcc3af344cda65647cd13742d37
work_keys_str_mv AT bibodai anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT bibodai anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT bibodai anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT yunminwang anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT yunminwang anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT chunyangye anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT qihangli anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT canmingyuan anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT songlu anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT songlu anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT yuyangli anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT bibodai novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT bibodai novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT bibodai novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT yunminwang novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT yunminwang novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT chunyangye novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT qihangli novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT canmingyuan novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT songlu novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT songlu novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
AT yuyangli novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork
_version_ 1718373841103749120