A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network
This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compa...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d0297fcc3af344cda65647cd13742d37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d0297fcc3af344cda65647cd13742d37 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d0297fcc3af344cda65647cd13742d372021-12-03T07:14:52ZA Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network2296-646310.3389/feart.2021.785476https://doaj.org/article/d0297fcc3af344cda65647cd13742d372021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/feart.2021.785476/fullhttps://doaj.org/toc/2296-6463This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compared to U-Net and mainstream superpixel method, evaluation indicators of DSC, VOE and RVD verify the high recognition accuracy and strong robustness of our method.Bibo DaiBibo DaiBibo DaiYunmin WangYunmin WangChunyang YeQihang LiCanming YuanSong LuSong LuYuyang LiFrontiers Media S.A.articlelandslideU-Net neural networksuperpixel methodpoint cloudevaluation indicatorsScienceQENFrontiers in Earth Science, Vol 9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
landslide U-Net neural network superpixel method point cloud evaluation indicators Science Q |
spellingShingle |
landslide U-Net neural network superpixel method point cloud evaluation indicators Science Q Bibo Dai Bibo Dai Bibo Dai Yunmin Wang Yunmin Wang Chunyang Ye Qihang Li Canming Yuan Song Lu Song Lu Yuyang Li A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network |
description |
This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compared to U-Net and mainstream superpixel method, evaluation indicators of DSC, VOE and RVD verify the high recognition accuracy and strong robustness of our method. |
format |
article |
author |
Bibo Dai Bibo Dai Bibo Dai Yunmin Wang Yunmin Wang Chunyang Ye Qihang Li Canming Yuan Song Lu Song Lu Yuyang Li |
author_facet |
Bibo Dai Bibo Dai Bibo Dai Yunmin Wang Yunmin Wang Chunyang Ye Qihang Li Canming Yuan Song Lu Song Lu Yuyang Li |
author_sort |
Bibo Dai |
title |
A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network |
title_short |
A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network |
title_full |
A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network |
title_fullStr |
A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network |
title_full_unstemmed |
A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network |
title_sort |
novel method for extracting time series information of deformation area of a single landslide based on improved u-net neural network |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/d0297fcc3af344cda65647cd13742d37 |
work_keys_str_mv |
AT bibodai anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT bibodai anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT bibodai anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT yunminwang anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT yunminwang anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT chunyangye anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT qihangli anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT canmingyuan anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT songlu anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT songlu anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT yuyangli anovelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT bibodai novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT bibodai novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT bibodai novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT yunminwang novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT yunminwang novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT chunyangye novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT qihangli novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT canmingyuan novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT songlu novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT songlu novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork AT yuyangli novelmethodforextractingtimeseriesinformationofdeformationareaofasinglelandslidebasedonimprovedunetneuralnetwork |
_version_ |
1718373841103749120 |