Self-Tuning Lam Annealing: Learning Hyperparameters While Problem Solving
The runtime behavior of Simulated Annealing (SA), similar to other metaheuristics, is controlled by hyperparameters. For SA, hyperparameters affect how “temperature” varies over time, and “temperature” in turn affects SA’s decisions on whether or not to transition to neighboring states. It is typica...
Guardado en:
Autor principal: | Vincent A. Cicirello |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d036af5c9c094a0ca83439ec9a1dd42d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediksi Harga Saham Menggunakan Metode Brown’s Weighted Exponential Moving Average dengan Optimasi Levenberg-Marquardt
por: Dini Indriyani Putri, et al.
Publicado: (2021) -
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
por: Fabian Dubourvieux, et al.
Publicado: (2021) -
Forecasting Stock Exchange Index Using Particle Swarm Optimization Comparing to Traditional Models
por: Darush Damoori, et al.
Publicado: (2011) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
por: Fatihah Rahmadayana, et al.
Publicado: (2021) -
Improving deep neural network using hyper-parameters tuning in predicting the bearing capacity of shallow foundations
por: Tuan Anh Pham, et al.
Publicado: (2021)