Saliency-based 3D convolutional neural network for categorising common focal liver lesions on multisequence MRI
Abstract Background The imaging features of focal liver lesions (FLLs) are diverse and complex. Diagnosing FLLs with imaging alone remains challenging. We developed and validated an interpretable deep learning model for the classification of seven categories of FLLs on multisequence MRI and compared...
Guardado en:
Autores principales: | Shu-Hui Wang, Xin-Jun Han, Jing Du, Zhen-Chang Wang, Chunwang Yuan, Yinan Chen, Yajing Zhu, Xin Dou, Xiao-Wei Xu, Hui Xu, Zheng-Han Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d040028a424a4073bc8776acf614b66e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fat Chance for Hidden Lesions: Pictorial Review of Hoffa's Fat Pad Lesions
por: Suvinay Saxena, et al.
Publicado: (2021) -
Value of susceptibility weighted imaging (SWI) in assessment of intra-arterial thrombus in patients with acute ischemic stroke
por: Ehab Ali Abdelgawad, et al.
Publicado: (2021) -
Prevalence of Enchondromas of the Proximal Femur in Adults as an Incidental Finding on MRI of the Pelvis
por: A. M. Davies, et al.
Publicado: (2021) -
Comparison between subtraction and dynamic MRI in assessing treatment response following radiofrequency ablation in patients with hepatocellular carcinoma
por: Ahmed Elshenawy Gabr, et al.
Publicado: (2021) -
Disseminated Extramedullary Plasmacytoma with Unusual Cardiac and Pancreatic Involvement—Literature Review and Rare Case Report
por: S. Babu Peter, et al.
Publicado: (2021)