An interaction regression model for crop yield prediction
Abstract Crop yield prediction is crucial for global food security yet notoriously challenging due to multitudinous factors that jointly determine the yield, including genotype, environment, management, and their complex interactions. Integrating the power of optimization, machine learning, and agro...
Guardado en:
Autores principales: | Javad Ansarifar, Lizhi Wang, Sotirios V. Archontoulis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d04f2b76f8b248cd9faf8b0a344c5624 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A time-dependent parameter estimation framework for crop modeling
por: Faezeh Akhavizadegan, et al.
Publicado: (2021) -
Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
por: Mohsen Shahhosseini, et al.
Publicado: (2021) -
Mathematical Modelling in Crop Production to Predict Crop Yields
por: Marzhan Anuarbekovna Sadenova, et al.
Publicado: (2021) -
Crop yield prediction integrating genotype and weather variables using deep learning.
por: Johnathon Shook, et al.
Publicado: (2021) -
Consistent negative response of US crops to high temperatures in observations and crop models
por: Bernhard Schauberger, et al.
Publicado: (2017)