Molecular parentage analysis is essential in breeding Asian seabass.

In aquaculture species, maintaining pedigree information and genetic variation in each generation is essential, but very difficult. In this study, we used nine microsatellites to genotype 2,520 offspring from four independent full-factorial crosses (10 males × 10 females) of Asian seabass to reconst...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peng Liu, Jun Hong Xia, Grace Lin, Fei Sun, Feng Liu, Huan Sein Lim, Hong Yan Pang, Gen Hua Yue
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d05c430921e14d4ea3b89122490a0a69
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In aquaculture species, maintaining pedigree information and genetic variation in each generation is essential, but very difficult. In this study, we used nine microsatellites to genotype 2,520 offspring from four independent full-factorial crosses (10 males × 10 females) of Asian seabass to reconstruct pedigree and monitor the change of genetic variations. In all four crosses, over 96.8% of the offspring could be assigned to their parents, indicating the high power of the nine microsatellites for parentage assignment. This study revealed several interesting results: (1). In all four crosses, the contribution of parents to offspring was significantly uneven, and some dominant breeding fishes (i.e. brooders) were found; (2). In two mass crosses where the brooders were carefully checked for reproductive status, a majority (≥ 90%) of brooders contributed to offspring, whereas in another two crosses, where the brooders were randomly picked without checking reproductive status, only a few brooders (40.0-45.0%) produced offspring; (3). Females had more problems in successful spawning compared to males; and (4). In the two crosses where a few brooders produced offspring, there was a substantial loss in allelic (24.1-34.3%) and gene (20.5-25.7%) diversities in offspring, while in the other two crosses, the majority of allelic (96.8-97.0%) and gene diversities (94.8-97.1%) were maintained. These observations suggest that a routine molecular parentage analysis is required to maintain both allelic and gene diversity in breeding Asian seabass.