Deep neural networks for global wildfire susceptibility modelling
Wildfire susceptibility is of great importance to the prevention and management of global wildfires. Artificial neural networks (ANNs), particularly multilayer perceptrons (MLPs), have been widely used in wildfire susceptibility. Recently, deep neural networks (DNNs) have become state-of-the-art alg...
Guardado en:
Autores principales: | Guoli Zhang, Ming Wang, Kai Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d087d3f315e443c5bcb0852362543c18 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aplicación de Técnicas Neuro-Difusas para el Diseño de un Controlador
por: Noriega,A., et al.
Publicado: (2005) -
Detection of Particulate Matter Changes Caused by 2020 California Wildfires Based on GNSS and Radiosonde Station
por: Jinyun Guo, et al.
Publicado: (2021) -
A Novel High-Speed and High-Accuracy Mathematical Modeling Method of Complex MEMS Resonator Structures Based on the Multilayer Perceptron Neural Network
por: Qingsong Li, et al.
Publicado: (2021) -
Effective heart disease prediction system using data mining techniques
por: Singh P, et al.
Publicado: (2018) -
Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment
por: Guangzhi Rong, et al.
Publicado: (2021)