Compositional modeling and simulation of dimethyl ether (DME)-enhanced waterflood to investigate oil mobility improvement

Abstract Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME-enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jinhyung Cho, Tae Hong Kim, Kun Sang Lee
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/d08d43f76853469bb692b264ef04d2de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME-enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance.