High perturbations of a new Kirchhoff problem involving the p-Laplace operator
Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
SpringerOpen
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/d08db5fe8c5349c9995010f1138d6f44 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b\int _{\Omega } \vert \nabla u \vert ^{p}\,dx ) \Delta _{p}u = \lambda \vert u \vert ^{q-2}u + g(x, u), & x \in \Omega , \\ u = 0, & x \in \partial \Omega , \end{cases} $$ where a , b > 0 $a, b > 0$ , Δ p u : = div ( | ∇ u | p − 2 ∇ u ) $\Delta _{p} u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplace operator, 1 < p < N $1 < p < N$ , p < q < p ∗ : = ( N p ) / ( N − p ) $p < q < p^{\ast }:=(Np)/(N-p)$ , Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ ( N ≥ 3 $N \geq 3$ ) is a bounded smooth domain. Under suitable conditions on g, we show the existence and multiplicity of solutions in the case of high perturbations (λ large enough). The novelty of our work is the appearance of new nonlocal terms which present interesting difficulties. |
---|