High perturbations of a new Kirchhoff problem involving the p-Laplace operator

Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Zhongyi Zhang, Yueqiang Song
Format: article
Langue:EN
Publié: SpringerOpen 2021
Sujets:
Accès en ligne:https://doaj.org/article/d08db5fe8c5349c9995010f1138d6f44
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b\int _{\Omega } \vert \nabla u \vert ^{p}\,dx ) \Delta _{p}u = \lambda \vert u \vert ^{q-2}u + g(x, u), & x \in \Omega , \\ u = 0, & x \in \partial \Omega , \end{cases} $$ where a , b > 0 $a, b > 0$ , Δ p u : = div ( | ∇ u | p − 2 ∇ u ) $\Delta _{p} u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplace operator, 1 < p < N $1 < p < N$ , p < q < p ∗ : = ( N p ) / ( N − p ) $p < q < p^{\ast }:=(Np)/(N-p)$ , Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ ( N ≥ 3 $N \geq 3$ ) is a bounded smooth domain. Under suitable conditions on g, we show the existence and multiplicity of solutions in the case of high perturbations (λ large enough). The novelty of our work is the appearance of new nonlocal terms which present interesting difficulties.