High perturbations of a new Kirchhoff problem involving the p-Laplace operator

Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhongyi Zhang, Yueqiang Song
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/d08db5fe8c5349c9995010f1138d6f44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d08db5fe8c5349c9995010f1138d6f44
record_format dspace
spelling oai:doaj.org-article:d08db5fe8c5349c9995010f1138d6f442021-12-05T12:07:30ZHigh perturbations of a new Kirchhoff problem involving the p-Laplace operator10.1186/s13661-021-01566-x1687-2770https://doaj.org/article/d08db5fe8c5349c9995010f1138d6f442021-12-01T00:00:00Zhttps://doi.org/10.1186/s13661-021-01566-xhttps://doaj.org/toc/1687-2770Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b\int _{\Omega } \vert \nabla u \vert ^{p}\,dx ) \Delta _{p}u = \lambda \vert u \vert ^{q-2}u + g(x, u), & x \in \Omega , \\ u = 0, & x \in \partial \Omega , \end{cases} $$ where a , b > 0 $a, b > 0$ , Δ p u : = div ( | ∇ u | p − 2 ∇ u ) $\Delta _{p} u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplace operator, 1 < p < N $1 < p < N$ , p < q < p ∗ : = ( N p ) / ( N − p ) $p < q < p^{\ast }:=(Np)/(N-p)$ , Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ ( N ≥ 3 $N \geq 3$ ) is a bounded smooth domain. Under suitable conditions on g, we show the existence and multiplicity of solutions in the case of high perturbations (λ large enough). The novelty of our work is the appearance of new nonlocal terms which present interesting difficulties.Zhongyi ZhangYueqiang SongSpringerOpenarticlep-Laplace operatorNew Kirchhoff problemVariational methodAnalysisQA299.6-433ENBoundary Value Problems, Vol 2021, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic p-Laplace operator
New Kirchhoff problem
Variational method
Analysis
QA299.6-433
spellingShingle p-Laplace operator
New Kirchhoff problem
Variational method
Analysis
QA299.6-433
Zhongyi Zhang
Yueqiang Song
High perturbations of a new Kirchhoff problem involving the p-Laplace operator
description Abstract In the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , $$ \textstyle\begin{cases} - (a-b\int _{\Omega } \vert \nabla u \vert ^{p}\,dx ) \Delta _{p}u = \lambda \vert u \vert ^{q-2}u + g(x, u), & x \in \Omega , \\ u = 0, & x \in \partial \Omega , \end{cases} $$ where a , b > 0 $a, b > 0$ , Δ p u : = div ( | ∇ u | p − 2 ∇ u ) $\Delta _{p} u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplace operator, 1 < p < N $1 < p < N$ , p < q < p ∗ : = ( N p ) / ( N − p ) $p < q < p^{\ast }:=(Np)/(N-p)$ , Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ ( N ≥ 3 $N \geq 3$ ) is a bounded smooth domain. Under suitable conditions on g, we show the existence and multiplicity of solutions in the case of high perturbations (λ large enough). The novelty of our work is the appearance of new nonlocal terms which present interesting difficulties.
format article
author Zhongyi Zhang
Yueqiang Song
author_facet Zhongyi Zhang
Yueqiang Song
author_sort Zhongyi Zhang
title High perturbations of a new Kirchhoff problem involving the p-Laplace operator
title_short High perturbations of a new Kirchhoff problem involving the p-Laplace operator
title_full High perturbations of a new Kirchhoff problem involving the p-Laplace operator
title_fullStr High perturbations of a new Kirchhoff problem involving the p-Laplace operator
title_full_unstemmed High perturbations of a new Kirchhoff problem involving the p-Laplace operator
title_sort high perturbations of a new kirchhoff problem involving the p-laplace operator
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/d08db5fe8c5349c9995010f1138d6f44
work_keys_str_mv AT zhongyizhang highperturbationsofanewkirchhoffprobleminvolvingtheplaplaceoperator
AT yueqiangsong highperturbationsofanewkirchhoffprobleminvolvingtheplaplaceoperator
_version_ 1718372220671098880