Predictions from algorithmic modeling result in better decisions than from data modeling for soybean iron deficiency chlorosis.
In soybean variety development and genetic improvement projects, iron deficiency chlorosis (IDC) is visually assessed as an ordinal response variable. Linear Mixed Models for Genomic Prediction (GP) have been developed, compared, and used to select continuous plant traits such as yield, height, and...
Enregistré dans:
Auteurs principaux: | Zhanyou Xu, Andreomar Kurek, Steven B Cannon, William D Beavis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d09932bcc7aa4dac9b44723fcca3a9b8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Intercropping with grasses helps to reduce iron chlorosis in olive
par: Cañasveras,J.C, et autres
Publié: (2014) -
Morpho-physiological parameters associated with chlorosis resistance to iron deficiency and their effect on yield and related attributes in potato (Solanum tuberosum L.)
par: Clarissa Challam, et autres
Publié: (2021) -
Organic acids alleviate iron chlorosis in chickpea grown on two p-fertilized soils
par: Sánchez-Rodríguez,A.R, et autres
Publié: (2014) -
Tolerance to iron chlorosis in non-grafted quince seedlings and in pear grafted onto quince plants
par: Prado,R.M, et autres
Publié: (2011) -
Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making
par: Jacqueline Beinecke, et autres
Publié: (2021)