Cesàro and Abel ergodic theorems for integrated semigroups

Let {S(t)}t≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we sh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barki Fatih
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/d09c407aa8594ec0a71e736659c3b80e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d09c407aa8594ec0a71e736659c3b80e
record_format dspace
spelling oai:doaj.org-article:d09c407aa8594ec0a71e736659c3b80e2021-12-05T14:10:45ZCesàro and Abel ergodic theorems for integrated semigroups2299-328210.1515/conop-2020-0119https://doaj.org/article/d09c407aa8594ec0a71e736659c3b80e2021-10-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0119https://doaj.org/toc/2299-3282Let {S(t)}t≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we show that the Abel average of S(t) converges uniformly if and only if 𝒳 = ℛ(A) ⊕ 𝒩(A), if and only if ℛ(Ak) is closed for some integer k and ∥ λ2R(λ, A) ∥ → 0 as λ→ 0+, where ℛ(A), 𝒩(A) and R(λ, A), be the range, the kernel, the resolvent function of A, respectively. Furthermore, we prove that if S(t)/t2 → 0 as t → 1, then the Cesàro mean of S(t) converges uniformly if and only if the Abel average of S(t) is also converges uniformly.Barki FatihDe Gruyterarticlecesàro meansabel averagesintegrated semigroupsuniform abel ergodicuniform cesàro ergodic47d62MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 135-149 (2021)
institution DOAJ
collection DOAJ
language EN
topic cesàro means
abel averages
integrated semigroups
uniform abel ergodic
uniform cesàro ergodic
47d62
Mathematics
QA1-939
spellingShingle cesàro means
abel averages
integrated semigroups
uniform abel ergodic
uniform cesàro ergodic
47d62
Mathematics
QA1-939
Barki Fatih
Cesàro and Abel ergodic theorems for integrated semigroups
description Let {S(t)}t≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we show that the Abel average of S(t) converges uniformly if and only if 𝒳 = ℛ(A) ⊕ 𝒩(A), if and only if ℛ(Ak) is closed for some integer k and ∥ λ2R(λ, A) ∥ → 0 as λ→ 0+, where ℛ(A), 𝒩(A) and R(λ, A), be the range, the kernel, the resolvent function of A, respectively. Furthermore, we prove that if S(t)/t2 → 0 as t → 1, then the Cesàro mean of S(t) converges uniformly if and only if the Abel average of S(t) is also converges uniformly.
format article
author Barki Fatih
author_facet Barki Fatih
author_sort Barki Fatih
title Cesàro and Abel ergodic theorems for integrated semigroups
title_short Cesàro and Abel ergodic theorems for integrated semigroups
title_full Cesàro and Abel ergodic theorems for integrated semigroups
title_fullStr Cesàro and Abel ergodic theorems for integrated semigroups
title_full_unstemmed Cesàro and Abel ergodic theorems for integrated semigroups
title_sort cesàro and abel ergodic theorems for integrated semigroups
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/d09c407aa8594ec0a71e736659c3b80e
work_keys_str_mv AT barkifatih cesaroandabelergodictheoremsforintegratedsemigroups
_version_ 1718371770954678272