Cesàro and Abel ergodic theorems for integrated semigroups
Let {S(t)}t≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we sh...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d09c407aa8594ec0a71e736659c3b80e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d09c407aa8594ec0a71e736659c3b80e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d09c407aa8594ec0a71e736659c3b80e2021-12-05T14:10:45ZCesàro and Abel ergodic theorems for integrated semigroups2299-328210.1515/conop-2020-0119https://doaj.org/article/d09c407aa8594ec0a71e736659c3b80e2021-10-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0119https://doaj.org/toc/2299-3282Let {S(t)}t≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we show that the Abel average of S(t) converges uniformly if and only if 𝒳 = ℛ(A) ⊕ 𝒩(A), if and only if ℛ(Ak) is closed for some integer k and ∥ λ2R(λ, A) ∥ → 0 as λ→ 0+, where ℛ(A), 𝒩(A) and R(λ, A), be the range, the kernel, the resolvent function of A, respectively. Furthermore, we prove that if S(t)/t2 → 0 as t → 1, then the Cesàro mean of S(t) converges uniformly if and only if the Abel average of S(t) is also converges uniformly.Barki FatihDe Gruyterarticlecesàro meansabel averagesintegrated semigroupsuniform abel ergodicuniform cesàro ergodic47d62MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 135-149 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cesàro means abel averages integrated semigroups uniform abel ergodic uniform cesàro ergodic 47d62 Mathematics QA1-939 |
spellingShingle |
cesàro means abel averages integrated semigroups uniform abel ergodic uniform cesàro ergodic 47d62 Mathematics QA1-939 Barki Fatih Cesàro and Abel ergodic theorems for integrated semigroups |
description |
Let {S(t)}t≥ 0 be an integrated semigroup of bounded linear operators on the Banach space 𝒳 into itself and let A be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of S(t) converge uniformly on ℬ(𝒳). More precisely, we show that the Abel average of S(t) converges uniformly if and only if 𝒳 = ℛ(A) ⊕ 𝒩(A), if and only if ℛ(Ak) is closed for some integer k and ∥ λ2R(λ, A) ∥ → 0 as λ→ 0+, where ℛ(A), 𝒩(A) and R(λ, A), be the range, the kernel, the resolvent function of A, respectively. Furthermore, we prove that if S(t)/t2 → 0 as t → 1, then the Cesàro mean of S(t) converges uniformly if and only if the Abel average of S(t) is also converges uniformly. |
format |
article |
author |
Barki Fatih |
author_facet |
Barki Fatih |
author_sort |
Barki Fatih |
title |
Cesàro and Abel ergodic theorems for integrated semigroups |
title_short |
Cesàro and Abel ergodic theorems for integrated semigroups |
title_full |
Cesàro and Abel ergodic theorems for integrated semigroups |
title_fullStr |
Cesàro and Abel ergodic theorems for integrated semigroups |
title_full_unstemmed |
Cesàro and Abel ergodic theorems for integrated semigroups |
title_sort |
cesàro and abel ergodic theorems for integrated semigroups |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/d09c407aa8594ec0a71e736659c3b80e |
work_keys_str_mv |
AT barkifatih cesaroandabelergodictheoremsforintegratedsemigroups |
_version_ |
1718371770954678272 |