Self-powered bifunctional sensor based on tribotronic planar graphene transistors

Abstract With the development of material science, micro-nano-fabrication and microelectronics, the higher level requirements are posed on the electronic skins (E-skin). The lower energy consumption and multiple functions are the imperative requirements to spurred scientists and mechanists to make j...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanfang Meng, Guoyun Gao, Jiaxue Zhu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d0a53d97960d4c85a6215af1bc000302
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract With the development of material science, micro-nano-fabrication and microelectronics, the higher level requirements are posed on the electronic skins (E-skin). The lower energy consumption and multiple functions are the imperative requirements to spurred scientists and mechanists to make joint efforts to meet. To achieve lower energy consumption, a promising energy-harvesting style of triboelectric nanogenerators (TENG) is incorporated into the field effect transistors (FETs) to play the important role for sensor. For bifunctional sensor, to harness the difficult for reflecting the magnitude of frequency, we resorted to synaptic transistors to achieve more intelligentization. Furthermore, with regards to the configuration of FET, we continued previous work: using the electrolyte gate dielectrics of FET—ion gel as the electrification layer to achieve high efficient, compact and extensively adoption for mechanosensation. The working principle of the GFET was based on the coupling effects of the FET and the TENG. This newly emerged self-powered sensor would offer a new platform for lower power consumption sensor for human–machine interface and intelligent robot.