Combined Deep Learning and SOR Detection Technique for High Reliability in Massive MIMO Systems
In this paper, a novel iterative detection technique that combines deep learning (DL) and the approximated algorithm of successive over relaxation (SOR) is proposed to achieve high reliability and reduce the computational complexity. Recently, as the demanded data rates increase, the massive multipl...
Guardado en:
Autores principales: | Jun-Yong Jang, Chan-Yeob Park, Beom-Sik Shin, Hyoung-Kyu Song |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d0d86f43fcf743998cbb33968d66b70b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On Multi-User Deep-Learning-Based Non-Coherent DPSK Multiple-Symbol Differential Detection in Massive MIMO Systems
por: Omnia Mahmoud, et al.
Publicado: (2021) -
Scalable user selection in FDD massive MIMO
por: Xing Zhang, et al.
Publicado: (2021) -
Hybrid precoding for mmWave massive MU-MIMO systems with overlapped subarray: A modified GLRAM approach
por: Ting Ding, et al.
Publicado: (2021) -
A Capacity Achieving MIMO Detector Based on Stochastic Sampling
por: Jonathan C. Hedstrom, et al.
Publicado: (2021) -
An Innovative MIMO Iterative Learning Control Approach for the Position Control of a Hydraulic Press
por: Ignacio Trojaola, et al.
Publicado: (2021)