Combined Deep Learning and SOR Detection Technique for High Reliability in Massive MIMO Systems
In this paper, a novel iterative detection technique that combines deep learning (DL) and the approximated algorithm of successive over relaxation (SOR) is proposed to achieve high reliability and reduce the computational complexity. Recently, as the demanded data rates increase, the massive multipl...
Enregistré dans:
Auteurs principaux: | Jun-Yong Jang, Chan-Yeob Park, Beom-Sik Shin, Hyoung-Kyu Song |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d0d86f43fcf743998cbb33968d66b70b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On Multi-User Deep-Learning-Based Non-Coherent DPSK Multiple-Symbol Differential Detection in Massive MIMO Systems
par: Omnia Mahmoud, et autres
Publié: (2021) -
Scalable user selection in FDD massive MIMO
par: Xing Zhang, et autres
Publié: (2021) -
Hybrid precoding for mmWave massive MU-MIMO systems with overlapped subarray: A modified GLRAM approach
par: Ting Ding, et autres
Publié: (2021) -
A Capacity Achieving MIMO Detector Based on Stochastic Sampling
par: Jonathan C. Hedstrom, et autres
Publié: (2021) -
An Innovative MIMO Iterative Learning Control Approach for the Position Control of a Hydraulic Press
par: Ignacio Trojaola, et autres
Publié: (2021)