A convolutional recurrent neural network with attention framework for speech separation in monaural recordings
Abstract Most speech separation studies in monaural channel use only a single type of network, and the separation effect is typically not satisfactory, posing difficulties for high quality speech separation. In this study, we propose a convolutional recurrent neural network with an attention (CRNN-A...
Guardado en:
Autores principales: | Chao Sun, Min Zhang, Ruijuan Wu, Junhong Lu, Guo Xian, Qin Yu, Xiaofeng Gong, Ruisen Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d0e7c3a33d6b4689a893b61ff127b46f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bangla hate speech detection on social media using attention-based recurrent neural network
por: Das Amit Kumar, et al.
Publicado: (2021) -
Automatic recognition of murmurs of ventricular septal defect using convolutional recurrent neural networks with temporal attentive pooling
por: Jou-Kou Wang, et al.
Publicado: (2020) -
Robust feature space separation for deep convolutional neural network training
por: Ali Sekmen, et al.
Publicado: (2021) -
An Attention-Based Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification
por: Muhammad Zakir Ullah, et al.
Publicado: (2021) -
A combined convolutional and recurrent neural network for enhanced glaucoma detection
por: Soheila Gheisari, et al.
Publicado: (2021)