Model-based deconvolution of cell cycle time-series data reveals gene expression details at high resolution.
In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure "just-in-time" assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systema...
Guardado en:
Autores principales: | Dan Siegal-Gaskins, Joshua N Ash, Sean Crosson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d0e8606b007b46e4be290813e7e4e31e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmarking of cell type deconvolution pipelines for transcriptomics data
por: Francisco Avila Cobos, et al.
Publicado: (2020) -
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
por: Zehua Liu, et al.
Publicado: (2017) -
Phase resetting reveals network dynamics underlying a bacterial cell cycle.
por: Yihan Lin, et al.
Publicado: (2012) -
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
por: Georgette Tanner, et al.
Publicado: (2021) -
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
por: Longqi Liu, et al.
Publicado: (2019)