Model-based deconvolution of cell cycle time-series data reveals gene expression details at high resolution.
In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure "just-in-time" assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systema...
Enregistré dans:
Auteurs principaux: | Dan Siegal-Gaskins, Joshua N Ash, Sean Crosson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2009
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d0e8606b007b46e4be290813e7e4e31e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Benchmarking of cell type deconvolution pipelines for transcriptomics data
par: Francisco Avila Cobos, et autres
Publié: (2020) -
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
par: Zehua Liu, et autres
Publié: (2017) -
Phase resetting reveals network dynamics underlying a bacterial cell cycle.
par: Yihan Lin, et autres
Publié: (2012) -
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
par: Georgette Tanner, et autres
Publié: (2021) -
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
par: Longqi Liu, et autres
Publié: (2019)