Stateful characterization of resistive switching TiO2 with electron beam induced currents

Oxide-based memristors hold promise for artificial neuromorphic computing, yet the detail of the switching mechanism—filament formation—remains largely unknown. Hoskins et al. provide nanoscale imaging of this process using electron beam induced current microscopy and relate it to resistive states....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Brian D. Hoskins, Gina C. Adam, Evgheni Strelcov, Nikolai Zhitenev, Andrei Kolmakov, Dmitri B. Strukov, Jabez J. McClelland
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/d0fb653e348142e1b8662ad03c0cfa6e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d0fb653e348142e1b8662ad03c0cfa6e
record_format dspace
spelling oai:doaj.org-article:d0fb653e348142e1b8662ad03c0cfa6e2021-12-02T14:42:25ZStateful characterization of resistive switching TiO2 with electron beam induced currents10.1038/s41467-017-02116-92041-1723https://doaj.org/article/d0fb653e348142e1b8662ad03c0cfa6e2017-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02116-9https://doaj.org/toc/2041-1723Oxide-based memristors hold promise for artificial neuromorphic computing, yet the detail of the switching mechanism—filament formation—remains largely unknown. Hoskins et al. provide nanoscale imaging of this process using electron beam induced current microscopy and relate it to resistive states.Brian D. HoskinsGina C. AdamEvgheni StrelcovNikolai ZhitenevAndrei KolmakovDmitri B. StrukovJabez J. McClellandNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Brian D. Hoskins
Gina C. Adam
Evgheni Strelcov
Nikolai Zhitenev
Andrei Kolmakov
Dmitri B. Strukov
Jabez J. McClelland
Stateful characterization of resistive switching TiO2 with electron beam induced currents
description Oxide-based memristors hold promise for artificial neuromorphic computing, yet the detail of the switching mechanism—filament formation—remains largely unknown. Hoskins et al. provide nanoscale imaging of this process using electron beam induced current microscopy and relate it to resistive states.
format article
author Brian D. Hoskins
Gina C. Adam
Evgheni Strelcov
Nikolai Zhitenev
Andrei Kolmakov
Dmitri B. Strukov
Jabez J. McClelland
author_facet Brian D. Hoskins
Gina C. Adam
Evgheni Strelcov
Nikolai Zhitenev
Andrei Kolmakov
Dmitri B. Strukov
Jabez J. McClelland
author_sort Brian D. Hoskins
title Stateful characterization of resistive switching TiO2 with electron beam induced currents
title_short Stateful characterization of resistive switching TiO2 with electron beam induced currents
title_full Stateful characterization of resistive switching TiO2 with electron beam induced currents
title_fullStr Stateful characterization of resistive switching TiO2 with electron beam induced currents
title_full_unstemmed Stateful characterization of resistive switching TiO2 with electron beam induced currents
title_sort stateful characterization of resistive switching tio2 with electron beam induced currents
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/d0fb653e348142e1b8662ad03c0cfa6e
work_keys_str_mv AT briandhoskins statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
AT ginacadam statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
AT evghenistrelcov statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
AT nikolaizhitenev statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
AT andreikolmakov statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
AT dmitribstrukov statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
AT jabezjmcclelland statefulcharacterizationofresistiveswitchingtio2withelectronbeaminducedcurrents
_version_ 1718389718945628160