Multitask learning over shared subspaces.
This paper uses constructs from machine learning to define pairs of learning tasks that either shared or did not share a common subspace. Human subjects then learnt these tasks using a feedback-based approach and we hypothesised that learning would be boosted for shared subspaces. Our findings broad...
Guardado en:
Autores principales: | Nicholas Menghi, Kemal Kacar, Will Penny |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d106e5c4366f4f8fa9d3caf8aeb511cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
VertNet: a new model for biodiversity data sharing.
por: Heather Constable, et al.
Publicado: (2010) -
Genome–wide association study for risk taking propensity indicates shared pathways with body mass index
por: Emma A. D. Clifton, et al.
Publicado: (2018) -
A shared transcriptional code orchestrates temporal patterning of the central nervous system.
por: Andreas Sagner, et al.
Publicado: (2021) -
Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
por: Yuhui Du, et al.
Publicado: (2021) -
Shared associations identify causal relationships between gene expression and immune cell phenotypes
por: Christiane Gasperi, et al.
Publicado: (2021)