Multitask learning over shared subspaces.
This paper uses constructs from machine learning to define pairs of learning tasks that either shared or did not share a common subspace. Human subjects then learnt these tasks using a feedback-based approach and we hypothesised that learning would be boosted for shared subspaces. Our findings broad...
Enregistré dans:
Auteurs principaux: | Nicholas Menghi, Kemal Kacar, Will Penny |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d106e5c4366f4f8fa9d3caf8aeb511cf |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
VertNet: a new model for biodiversity data sharing.
par: Heather Constable, et autres
Publié: (2010) -
Genome–wide association study for risk taking propensity indicates shared pathways with body mass index
par: Emma A. D. Clifton, et autres
Publié: (2018) -
A shared transcriptional code orchestrates temporal patterning of the central nervous system.
par: Andreas Sagner, et autres
Publié: (2021) -
Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
par: Yuhui Du, et autres
Publié: (2021) -
Shared associations identify causal relationships between gene expression and immune cell phenotypes
par: Christiane Gasperi, et autres
Publié: (2021)