Machine learning meets complex networks via coalescent embedding in the hyperbolic space

Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, Carlo Vittorio Cannistraci
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.