Machine learning meets complex networks via coalescent embedding in the hyperbolic space
Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d1158773a17e4a07802f5e3302700f6a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d1158773a17e4a07802f5e3302700f6a2021-12-02T17:06:17ZMachine learning meets complex networks via coalescent embedding in the hyperbolic space10.1038/s41467-017-01825-52041-1723https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a2017-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01825-5https://doaj.org/toc/2041-1723Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.Alessandro MuscoloniJosephine Maria ThomasSara CiucciGinestra BianconiCarlo Vittorio CannistraciNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-19 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Alessandro Muscoloni Josephine Maria Thomas Sara Ciucci Ginestra Bianconi Carlo Vittorio Cannistraci Machine learning meets complex networks via coalescent embedding in the hyperbolic space |
description |
Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis. |
format |
article |
author |
Alessandro Muscoloni Josephine Maria Thomas Sara Ciucci Ginestra Bianconi Carlo Vittorio Cannistraci |
author_facet |
Alessandro Muscoloni Josephine Maria Thomas Sara Ciucci Ginestra Bianconi Carlo Vittorio Cannistraci |
author_sort |
Alessandro Muscoloni |
title |
Machine learning meets complex networks via coalescent embedding in the hyperbolic space |
title_short |
Machine learning meets complex networks via coalescent embedding in the hyperbolic space |
title_full |
Machine learning meets complex networks via coalescent embedding in the hyperbolic space |
title_fullStr |
Machine learning meets complex networks via coalescent embedding in the hyperbolic space |
title_full_unstemmed |
Machine learning meets complex networks via coalescent embedding in the hyperbolic space |
title_sort |
machine learning meets complex networks via coalescent embedding in the hyperbolic space |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a |
work_keys_str_mv |
AT alessandromuscoloni machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace AT josephinemariathomas machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace AT saraciucci machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace AT ginestrabianconi machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace AT carlovittoriocannistraci machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace |
_version_ |
1718381700752343040 |