Machine learning meets complex networks via coalescent embedding in the hyperbolic space

Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, Carlo Vittorio Cannistraci
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d1158773a17e4a07802f5e3302700f6a
record_format dspace
spelling oai:doaj.org-article:d1158773a17e4a07802f5e3302700f6a2021-12-02T17:06:17ZMachine learning meets complex networks via coalescent embedding in the hyperbolic space10.1038/s41467-017-01825-52041-1723https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a2017-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01825-5https://doaj.org/toc/2041-1723Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.Alessandro MuscoloniJosephine Maria ThomasSara CiucciGinestra BianconiCarlo Vittorio CannistraciNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-19 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Alessandro Muscoloni
Josephine Maria Thomas
Sara Ciucci
Ginestra Bianconi
Carlo Vittorio Cannistraci
Machine learning meets complex networks via coalescent embedding in the hyperbolic space
description Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.
format article
author Alessandro Muscoloni
Josephine Maria Thomas
Sara Ciucci
Ginestra Bianconi
Carlo Vittorio Cannistraci
author_facet Alessandro Muscoloni
Josephine Maria Thomas
Sara Ciucci
Ginestra Bianconi
Carlo Vittorio Cannistraci
author_sort Alessandro Muscoloni
title Machine learning meets complex networks via coalescent embedding in the hyperbolic space
title_short Machine learning meets complex networks via coalescent embedding in the hyperbolic space
title_full Machine learning meets complex networks via coalescent embedding in the hyperbolic space
title_fullStr Machine learning meets complex networks via coalescent embedding in the hyperbolic space
title_full_unstemmed Machine learning meets complex networks via coalescent embedding in the hyperbolic space
title_sort machine learning meets complex networks via coalescent embedding in the hyperbolic space
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a
work_keys_str_mv AT alessandromuscoloni machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace
AT josephinemariathomas machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace
AT saraciucci machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace
AT ginestrabianconi machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace
AT carlovittoriocannistraci machinelearningmeetscomplexnetworksviacoalescentembeddinginthehyperbolicspace
_version_ 1718381700752343040