Machine learning meets complex networks via coalescent embedding in the hyperbolic space
Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.
Guardado en:
Autores principales: | Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, Carlo Vittorio Cannistraci |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimisation of the coalescent hyperbolic embedding of complex networks
por: Bianka Kovács, et al.
Publicado: (2021) -
Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes
por: Carlo Vittorio Cannistraci
Publicado: (2018) -
Modular gateway-ness connectivity and structural core organization in maritime network science
por: Mengqiao Xu, et al.
Publicado: (2020) -
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
por: Jiarui Ding, et al.
Publicado: (2021) -
Composition operators in hyperbolic general Besov-type spaces
por: El-Sayed Ahmed,A, et al.
Publicado: (2013)