Machine learning meets complex networks via coalescent embedding in the hyperbolic space
Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.
Enregistré dans:
Auteurs principaux: | Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, Carlo Vittorio Cannistraci |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optimisation of the coalescent hyperbolic embedding of complex networks
par: Bianka Kovács, et autres
Publié: (2021) -
Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes
par: Carlo Vittorio Cannistraci
Publié: (2018) -
Modular gateway-ness connectivity and structural core organization in maritime network science
par: Mengqiao Xu, et autres
Publié: (2020) -
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
par: Jiarui Ding, et autres
Publié: (2021) -
Composition operators in hyperbolic general Besov-type spaces
par: El-Sayed Ahmed,A, et autres
Publié: (2013)