Machine learning meets complex networks via coalescent embedding in the hyperbolic space

Mapping complex networks to underlying geometric spaces can help understand the structure of networked systems. Here the authors propose a class of machine learning algorithms for efficient embedding of large real networks to the hyperbolic space, with potential impact on big network data analysis.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, Carlo Vittorio Cannistraci
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
Q
Accès en ligne:https://doaj.org/article/d1158773a17e4a07802f5e3302700f6a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires