A new exhaustive method and strategy for finding motifs in ChIP-enriched regions.

ChIP-seq, which combines chromatin immunoprecipitation (ChIP) with next-generation parallel sequencing, allows for the genome-wide identification of protein-DNA interactions. This technology poses new challenges for the development of novel motif-finding algorithms and methods for determining exact...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Caiyan Jia, Matthew B Carson, Yang Wang, Youfang Lin, Hui Lu
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d118fcccccfa4765a9b9629de0d7da9c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ChIP-seq, which combines chromatin immunoprecipitation (ChIP) with next-generation parallel sequencing, allows for the genome-wide identification of protein-DNA interactions. This technology poses new challenges for the development of novel motif-finding algorithms and methods for determining exact protein-DNA binding sites from ChIP-enriched sequencing data. State-of-the-art heuristic, exhaustive search algorithms have limited application for the identification of short (l, d) motifs (l ≤ 10, d ≤ 2) contained in ChIP-enriched regions. In this work we have developed a more powerful exhaustive method (FMotif) for finding long (l, d) motifs in DNA sequences. In conjunction with our method, we have adopted a simple ChIP-enriched sampling strategy for finding these motifs in large-scale ChIP-enriched regions. Empirical studies on synthetic samples and applications using several ChIP data sets including 16 TF (transcription factor) ChIP-seq data sets and five TF ChIP-exo data sets have demonstrated that our proposed method is capable of finding these motifs with high efficiency and accuracy. The source code for FMotif is available at http://211.71.76.45/FMotif/.