Real-time clinician text feeds from electronic health records
Abstract Analyses of search engine and social media feeds have been attempted for infectious disease outbreaks, but have been found to be susceptible to artefactual distortions from health scares or keyword spamming in social media or the public internet. We describe an approach using real-time aggr...
Enregistré dans:
Auteurs principaux: | James T. H. Teo, Vlad Dinu, William Bernal, Phil Davidson, Vitaliy Oliynyk, Cormac Breen, Richard D. Barker, Richard J. B. Dobson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d131c890e49a44d29a3e707c80b44572 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?
par: Brett K. Beaulieu-Jones, et autres
Publié: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
par: Wei Gao, et autres
Publié: (2021) -
Training for our digital future: a human-centered design approach to graduate medical education for aspiring clinician-innovators
par: Jocelyn Carter, et autres
Publié: (2018) -
Harnessing electronic health records to study emerging environmental disasters: a proof of concept with perfluoroalkyl substances (PFAS)
par: Mary Regina Boland, et autres
Publié: (2021) -
Measuring the effect of Non-Pharmaceutical Interventions (NPIs) on mobility during the COVID-19 pandemic using global mobility data
par: Berber T. Snoeijer, et autres
Publié: (2021)