Infinitesimals via Cauchy sequences: Refining the classical equivalence
A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infin...
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals. |
---|