Infinitesimals via Cauchy sequences: Refining the classical equivalence
A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infin...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d13d18f012f6434e84d91c4e892b4564 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d13d18f012f6434e84d91c4e892b45642021-12-05T14:10:53ZInfinitesimals via Cauchy sequences: Refining the classical equivalence2391-545510.1515/math-2021-0048https://doaj.org/article/d13d18f012f6434e84d91c4e892b45642021-06-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0048https://doaj.org/toc/2391-5455A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals.Bottazzi EmanueleKatz Mikhail G.De Gruyterarticlecauchy sequencehyperrealinfinitesimal03h0526e35MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 477-482 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cauchy sequence hyperreal infinitesimal 03h05 26e35 Mathematics QA1-939 |
spellingShingle |
cauchy sequence hyperreal infinitesimal 03h05 26e35 Mathematics QA1-939 Bottazzi Emanuele Katz Mikhail G. Infinitesimals via Cauchy sequences: Refining the classical equivalence |
description |
A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals. |
format |
article |
author |
Bottazzi Emanuele Katz Mikhail G. |
author_facet |
Bottazzi Emanuele Katz Mikhail G. |
author_sort |
Bottazzi Emanuele |
title |
Infinitesimals via Cauchy sequences: Refining the classical equivalence |
title_short |
Infinitesimals via Cauchy sequences: Refining the classical equivalence |
title_full |
Infinitesimals via Cauchy sequences: Refining the classical equivalence |
title_fullStr |
Infinitesimals via Cauchy sequences: Refining the classical equivalence |
title_full_unstemmed |
Infinitesimals via Cauchy sequences: Refining the classical equivalence |
title_sort |
infinitesimals via cauchy sequences: refining the classical equivalence |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564 |
work_keys_str_mv |
AT bottazziemanuele infinitesimalsviacauchysequencesrefiningtheclassicalequivalence AT katzmikhailg infinitesimalsviacauchysequencesrefiningtheclassicalequivalence |
_version_ |
1718371630062764032 |