Infinitesimals via Cauchy sequences: Refining the classical equivalence
A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infin...
Guardado en:
Autores principales: | Bottazzi Emanuele, Katz Mikhail G. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inhomogeneous conformable abstract Cauchy problem
por: Rabhi Lahcene, et al.
Publicado: (2021) -
λ-quasi Cauchy sequence of fuzzy numbers
por: Baruah,Achyutananda, et al.
Publicado: (2021) -
On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences
por: Esi,Ayhan, et al.
Publicado: (2017) -
Fractional Cesàro Matrix and its Associated Sequence Space
por: Roopaei H., et al.
Publicado: (2021) -
Transverse Hilbert schemes and completely integrable systems
por: Donin Niccolò Lora Lamia
Publicado: (2017)