Infinitesimals via Cauchy sequences: Refining the classical equivalence
A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infin...
Enregistré dans:
Auteurs principaux: | Bottazzi Emanuele, Katz Mikhail G. |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d13d18f012f6434e84d91c4e892b4564 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Inhomogeneous conformable abstract Cauchy problem
par: Rabhi Lahcene, et autres
Publié: (2021) -
λ-quasi Cauchy sequence of fuzzy numbers
par: Baruah,Achyutananda, et autres
Publié: (2021) -
On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences
par: Esi,Ayhan, et autres
Publié: (2017) -
Fractional Cesàro Matrix and its Associated Sequence Space
par: Roopaei H., et autres
Publié: (2021) -
Transverse Hilbert schemes and completely integrable systems
par: Donin Niccolò Lora Lamia
Publié: (2017)