Error mitigation with Clifford quantum-circuit data

Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{nois...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, Lukasz Cincio
Formato: article
Lenguaje:EN
Publicado: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021
Materias:
Acceso en línea:https://doaj.org/article/d13fd1910b05422d996c43b26d729e77
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{noisy}},X_i^{\text{exact}}\}$ via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where $X_i^{\text{noisy}}$ and $X_i^{\text{exact}}$ are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.