Error mitigation with Clifford quantum-circuit data
Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{nois...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d13fd1910b05422d996c43b26d729e77 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{noisy}},X_i^{\text{exact}}\}$ via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where $X_i^{\text{noisy}}$ and $X_i^{\text{exact}}$ are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator. |
---|