Error mitigation with Clifford quantum-circuit data

Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{nois...

Full description

Saved in:
Bibliographic Details
Main Authors: Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, Lukasz Cincio
Format: article
Language:EN
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021
Subjects:
Online Access:https://doaj.org/article/d13fd1910b05422d996c43b26d729e77
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:doaj.org-article:d13fd1910b05422d996c43b26d729e77
record_format dspace
spelling oai:doaj.org-article:d13fd1910b05422d996c43b26d729e772021-11-26T11:59:59ZError mitigation with Clifford quantum-circuit data2521-327X10.22331/q-2021-11-26-592https://doaj.org/article/d13fd1910b05422d996c43b26d729e772021-11-01T00:00:00Zhttps://quantum-journal.org/papers/q-2021-11-26-592/pdf/https://doaj.org/toc/2521-327XAchieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{noisy}},X_i^{\text{exact}}\}$ via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where $X_i^{\text{noisy}}$ and $X_i^{\text{exact}}$ are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.Piotr CzarnikAndrew ArrasmithPatrick J. ColesLukasz CincioVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenarticlePhysicsQC1-999ENQuantum, Vol 5, p 592 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Lukasz Cincio
Error mitigation with Clifford quantum-circuit data
description Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{noisy}},X_i^{\text{exact}}\}$ via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where $X_i^{\text{noisy}}$ and $X_i^{\text{exact}}$ are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.
format article
author Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Lukasz Cincio
author_facet Piotr Czarnik
Andrew Arrasmith
Patrick J. Coles
Lukasz Cincio
author_sort Piotr Czarnik
title Error mitigation with Clifford quantum-circuit data
title_short Error mitigation with Clifford quantum-circuit data
title_full Error mitigation with Clifford quantum-circuit data
title_fullStr Error mitigation with Clifford quantum-circuit data
title_full_unstemmed Error mitigation with Clifford quantum-circuit data
title_sort error mitigation with clifford quantum-circuit data
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
publishDate 2021
url https://doaj.org/article/d13fd1910b05422d996c43b26d729e77
work_keys_str_mv AT piotrczarnik errormitigationwithcliffordquantumcircuitdata
AT andrewarrasmith errormitigationwithcliffordquantumcircuitdata
AT patrickjcoles errormitigationwithcliffordquantumcircuitdata
AT lukaszcincio errormitigationwithcliffordquantumcircuitdata
_version_ 1718409438753193984