Error mitigation with Clifford quantum-circuit data
Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{nois...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d13fd1910b05422d996c43b26d729e77 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d13fd1910b05422d996c43b26d729e77 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d13fd1910b05422d996c43b26d729e772021-11-26T11:59:59ZError mitigation with Clifford quantum-circuit data2521-327X10.22331/q-2021-11-26-592https://doaj.org/article/d13fd1910b05422d996c43b26d729e772021-11-01T00:00:00Zhttps://quantum-journal.org/papers/q-2021-11-26-592/pdf/https://doaj.org/toc/2521-327XAchieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{noisy}},X_i^{\text{exact}}\}$ via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where $X_i^{\text{noisy}}$ and $X_i^{\text{exact}}$ are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.Piotr CzarnikAndrew ArrasmithPatrick J. ColesLukasz CincioVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenarticlePhysicsQC1-999ENQuantum, Vol 5, p 592 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Piotr Czarnik Andrew Arrasmith Patrick J. Coles Lukasz Cincio Error mitigation with Clifford quantum-circuit data |
description |
Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data $\{X_i^{\text{noisy}},X_i^{\text{exact}}\}$ via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where $X_i^{\text{noisy}}$ and $X_i^{\text{exact}}$ are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator. |
format |
article |
author |
Piotr Czarnik Andrew Arrasmith Patrick J. Coles Lukasz Cincio |
author_facet |
Piotr Czarnik Andrew Arrasmith Patrick J. Coles Lukasz Cincio |
author_sort |
Piotr Czarnik |
title |
Error mitigation with Clifford quantum-circuit data |
title_short |
Error mitigation with Clifford quantum-circuit data |
title_full |
Error mitigation with Clifford quantum-circuit data |
title_fullStr |
Error mitigation with Clifford quantum-circuit data |
title_full_unstemmed |
Error mitigation with Clifford quantum-circuit data |
title_sort |
error mitigation with clifford quantum-circuit data |
publisher |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
publishDate |
2021 |
url |
https://doaj.org/article/d13fd1910b05422d996c43b26d729e77 |
work_keys_str_mv |
AT piotrczarnik errormitigationwithcliffordquantumcircuitdata AT andrewarrasmith errormitigationwithcliffordquantumcircuitdata AT patrickjcoles errormitigationwithcliffordquantumcircuitdata AT lukaszcincio errormitigationwithcliffordquantumcircuitdata |
_version_ |
1718409438753193984 |