Evaluating High-Variance Leaves as Uncertainty Measure for Random Forest Regression
Uncertainty measures estimate the reliability of a predictive model. Especially in the field of molecular property prediction as part of drug design, model reliability is crucial. Besides other techniques, Random Forests have a long tradition in machine learning related to chemoinformatics and are w...
Enregistré dans:
Auteurs principaux: | Thomas-Martin Dutschmann, Knut Baumann |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d15d70fe033b45f9aeceb06f4d3b08ee |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Modeling Structure–Activity Relationship of AMPK Activation
par: Jürgen Drewe, et autres
Publié: (2021) -
Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
par: Zhongqiang Wu, et autres
Publié: (2021) -
Random Forest Regression-Based Machine Learning Model for Accurate Estimation of Fluid Flow in Curved Pipes
par: Ganesh N., et autres
Publié: (2021) -
Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land
par: Xuefeng Xie, et autres
Publié: (2021) -
Being Uncertain in Chromatographic Calibration—Some Unobvious Details in Experimental Design
par: Łukasz Komsta, et autres
Publié: (2021)