Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice
Epidemiological studies suggest that ambient particulate matter exposure may be a new risk factor of glaucoma, but it lacks solid experimental evidence to establish a causal relationship. In this study, young mice (4 weeks old) were exposed concentrated ambient PM2.5 (CAP) for 9 months, which is thr...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d162ae196ee44d81b5df3086d7f85d76 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d162ae196ee44d81b5df3086d7f85d76 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d162ae196ee44d81b5df3086d7f85d762021-11-14T04:28:20ZLifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice0147-651310.1016/j.ecoenv.2021.112963https://doaj.org/article/d162ae196ee44d81b5df3086d7f85d762021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0147651321010757https://doaj.org/toc/0147-6513Epidemiological studies suggest that ambient particulate matter exposure may be a new risk factor of glaucoma, but it lacks solid experimental evidence to establish a causal relationship. In this study, young mice (4 weeks old) were exposed concentrated ambient PM2.5 (CAP) for 9 months, which is throughout most of the life span of a mouse under heavy pollution. CAP was introduced using a versatile aerosol concentration enrichment system which mimics natural PM2.5 exposure. CAP exposure caused a gradual elevation of intraocular pressure (IOP) and an increase in aqueous humor outflow resistance. In the conventional outflow tissues that regulates IOP, inducible nitric oxide synthase (iNOS) was up-regulated and 3-nitrotyrosine (3-NT) formation increased. At the cellular level, PM2.5 exposure increased the transendothelial electrical resistance of cells that control IOP (AAP cells). This is accompanied by increased reactive oxygen species (ROS), iNOS and 3-NT levels. Peroxynitrite scavenger MnTMPyP successfully treated the IOP elevation and restored it to normal levels by reducing 3-NT formation in outflow tissues. This study provides the novel evidence that in young mice, lifetime whole-body PM2.5 exposure has a direct toxic effect on intraocular tissues, which imposes a significant risk of IOP elevation and may initiate the development of ocular hypertension and glaucoma. This occurs as a result of protein nitration of conventional aqueous humor outflow tissues.Liping LiJi ZhouWenpei FanLiangliang NiuMaomao SongBo QinXinghuai SunYuan LeiElsevierarticlePM2.5GlaucomaIntraocular pressure3-nitrotyrosineNitrative stressEnvironmental pollutionTD172-193.5Environmental sciencesGE1-350ENEcotoxicology and Environmental Safety, Vol 228, Iss , Pp 112963- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
PM2.5 Glaucoma Intraocular pressure 3-nitrotyrosine Nitrative stress Environmental pollution TD172-193.5 Environmental sciences GE1-350 |
spellingShingle |
PM2.5 Glaucoma Intraocular pressure 3-nitrotyrosine Nitrative stress Environmental pollution TD172-193.5 Environmental sciences GE1-350 Liping Li Ji Zhou Wenpei Fan Liangliang Niu Maomao Song Bo Qin Xinghuai Sun Yuan Lei Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice |
description |
Epidemiological studies suggest that ambient particulate matter exposure may be a new risk factor of glaucoma, but it lacks solid experimental evidence to establish a causal relationship. In this study, young mice (4 weeks old) were exposed concentrated ambient PM2.5 (CAP) for 9 months, which is throughout most of the life span of a mouse under heavy pollution. CAP was introduced using a versatile aerosol concentration enrichment system which mimics natural PM2.5 exposure. CAP exposure caused a gradual elevation of intraocular pressure (IOP) and an increase in aqueous humor outflow resistance. In the conventional outflow tissues that regulates IOP, inducible nitric oxide synthase (iNOS) was up-regulated and 3-nitrotyrosine (3-NT) formation increased. At the cellular level, PM2.5 exposure increased the transendothelial electrical resistance of cells that control IOP (AAP cells). This is accompanied by increased reactive oxygen species (ROS), iNOS and 3-NT levels. Peroxynitrite scavenger MnTMPyP successfully treated the IOP elevation and restored it to normal levels by reducing 3-NT formation in outflow tissues. This study provides the novel evidence that in young mice, lifetime whole-body PM2.5 exposure has a direct toxic effect on intraocular tissues, which imposes a significant risk of IOP elevation and may initiate the development of ocular hypertension and glaucoma. This occurs as a result of protein nitration of conventional aqueous humor outflow tissues. |
format |
article |
author |
Liping Li Ji Zhou Wenpei Fan Liangliang Niu Maomao Song Bo Qin Xinghuai Sun Yuan Lei |
author_facet |
Liping Li Ji Zhou Wenpei Fan Liangliang Niu Maomao Song Bo Qin Xinghuai Sun Yuan Lei |
author_sort |
Liping Li |
title |
Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice |
title_short |
Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice |
title_full |
Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice |
title_fullStr |
Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice |
title_full_unstemmed |
Lifetime exposure of ambient PM2.5 elevates intraocular pressure in young mice |
title_sort |
lifetime exposure of ambient pm2.5 elevates intraocular pressure in young mice |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/d162ae196ee44d81b5df3086d7f85d76 |
work_keys_str_mv |
AT lipingli lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT jizhou lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT wenpeifan lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT liangliangniu lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT maomaosong lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT boqin lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT xinghuaisun lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice AT yuanlei lifetimeexposureofambientpm25elevatesintraocularpressureinyoungmice |
_version_ |
1718430044115697664 |