Hysteresis modeling in ballistic carbon nanotube field-effect transistors

Yian Liu,1 Mateus S Moura,2 Ademir J Costa,2,3 Luiz Alberto L de Almeida,4 Makarand Paranjape,1 Marcio Fontana21Department of Physics, Georgetown University, Washington, DC, USA; 2Department of Electrical Engineering, Federal University of Bahia, Salvador, Brazil; 3Federal Institute of Bahia, Santo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liu Y, Moura MS, Costa AJ, Almeida LA, Paranjape M, Fontana M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/d16595ebf9b9436e8e640d30a8ebd072
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d16595ebf9b9436e8e640d30a8ebd072
record_format dspace
spelling oai:doaj.org-article:d16595ebf9b9436e8e640d30a8ebd0722021-12-02T08:14:07ZHysteresis modeling in ballistic carbon nanotube field-effect transistors1177-8903https://doaj.org/article/d16595ebf9b9436e8e640d30a8ebd0722014-07-01T00:00:00Zhttp://www.dovepress.com/hysteresis-modeling-in-ballistic-carbon-nanotube-field-effect-transist-a17518https://doaj.org/toc/1177-8903 Yian Liu,1 Mateus S Moura,2 Ademir J Costa,2,3 Luiz Alberto L de Almeida,4 Makarand Paranjape,1 Marcio Fontana21Department of Physics, Georgetown University, Washington, DC, USA; 2Department of Electrical Engineering, Federal University of Bahia, Salvador, Brazil; 3Federal Institute of Bahia, Santo Amaro, Brazil; 4Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André, BrazilAbstract: Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications.Keywords: ballistic transport, nanoscale device, solid-state deviceLiu YMoura MSCosta AJAlmeida LAParanjape MFontana MDove Medical PressarticleMedical technologyR855-855.5Chemical technologyTP1-1185ENNanotechnology, Science and Applications, Vol 2014, Iss default, Pp 55-61 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medical technology
R855-855.5
Chemical technology
TP1-1185
spellingShingle Medical technology
R855-855.5
Chemical technology
TP1-1185
Liu Y
Moura MS
Costa AJ
Almeida LA
Paranjape M
Fontana M
Hysteresis modeling in ballistic carbon nanotube field-effect transistors
description Yian Liu,1 Mateus S Moura,2 Ademir J Costa,2,3 Luiz Alberto L de Almeida,4 Makarand Paranjape,1 Marcio Fontana21Department of Physics, Georgetown University, Washington, DC, USA; 2Department of Electrical Engineering, Federal University of Bahia, Salvador, Brazil; 3Federal Institute of Bahia, Santo Amaro, Brazil; 4Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André, BrazilAbstract: Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications.Keywords: ballistic transport, nanoscale device, solid-state device
format article
author Liu Y
Moura MS
Costa AJ
Almeida LA
Paranjape M
Fontana M
author_facet Liu Y
Moura MS
Costa AJ
Almeida LA
Paranjape M
Fontana M
author_sort Liu Y
title Hysteresis modeling in ballistic carbon nanotube field-effect transistors
title_short Hysteresis modeling in ballistic carbon nanotube field-effect transistors
title_full Hysteresis modeling in ballistic carbon nanotube field-effect transistors
title_fullStr Hysteresis modeling in ballistic carbon nanotube field-effect transistors
title_full_unstemmed Hysteresis modeling in ballistic carbon nanotube field-effect transistors
title_sort hysteresis modeling in ballistic carbon nanotube field-effect transistors
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/d16595ebf9b9436e8e640d30a8ebd072
work_keys_str_mv AT liuy hysteresismodelinginballisticcarbonnanotubefieldeffecttransistors
AT mourams hysteresismodelinginballisticcarbonnanotubefieldeffecttransistors
AT costaaj hysteresismodelinginballisticcarbonnanotubefieldeffecttransistors
AT almeidala hysteresismodelinginballisticcarbonnanotubefieldeffecttransistors
AT paranjapem hysteresismodelinginballisticcarbonnanotubefieldeffecttransistors
AT fontanam hysteresismodelinginballisticcarbonnanotubefieldeffecttransistors
_version_ 1718398627048587264