A deep learning algorithm for automated measurement of vertebral body compression from X-ray images
Abstract The vertebral compression is a significant factor for determining the prognosis of osteoporotic vertebral compression fractures and is generally measured manually by specialists. The consequent misdiagnosis or delayed diagnosis can be fatal for patients. In this study, we trained and evalua...
Guardado en:
Autores principales: | Jae Won Seo, Sang Heon Lim, Jin Gyo Jeong, Young Jae Kim, Kwang Gi Kim, Ji Young Jeon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d167dd4198354cd4bc44b44931e5e79c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reproducibility of automated habenula segmentation via deep learning in major depressive disorder and normal controls with 7 Tesla MRI
por: Sang-Heon Lim, et al.
Publicado: (2021) -
Accuracy and precision of the spinal instability neoplastic score (SINS) for predicting vertebral compression fractures after radiotherapy in spinal metastases: a meta-analysis
por: Young Rak Kim, et al.
Publicado: (2021) -
Tracheal Compression by Aberrant Brachiocephalic Trunk Accompanying Variant Origin of the Vertebral Artery
por: Yang,Kiwook, et al.
Publicado: (2017) -
Visualization of a Mammalian Mitochondrion by Coherent X-ray Diffractive Imaging
por: Yoonhee Kim, et al.
Publicado: (2017) -
Validation of expert system enhanced deep learning algorithm for automated screening for COVID-Pneumonia on chest X-rays
por: Prashant Sadashiv Gidde, et al.
Publicado: (2021)