Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry
Abstract Neutron reflectometry (NR) allows us to probe into the structure of the surfaces and interfaces of various materials such as soft matters and magnetic thin films with a contrast mechanism dependent on isotopic and magnetic states. The neutron beam flux is relatively low compared to that of...
Guardado en:
Autores principales: | Hiroyuki Aoki, Yuwei Liu, Takashi Yamashita |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d168e5a353f1460c89ea1c0ecd10bf71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards a neutron and X-ray reflectometry environment for the study of solid–liquid interfaces under shear
por: Alexander J. Armstrong, et al.
Publicado: (2021) -
Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by neutron reflectometry
por: Alessandra Luchini, et al.
Publicado: (2021) -
Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation
por: Ameeq Ul Mushtaq, et al.
Publicado: (2021) -
Optomechanical time-domain reflectometry
por: Gil Bashan, et al.
Publicado: (2018) -
Deep Learning Approaches for Impulse Noise Mitigation and Classification in NOMA-Based Systems
por: Muhammad Hussain, et al.
Publicado: (2021)