Information-rich localization microscopy through machine learning

Single-molecule methods often rely on point spread functions that are tailored to interpret specific information. Here the authors use a neural network to extract complex PSF information from experimental images, and demonstrate this by classifying color and axial positions of emitters.

Guardado en:
Detalles Bibliográficos
Autores principales: Taehwan Kim, Seonah Moon, Ke Xu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/d16a8683e3b8455ab94be76774f148ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single-molecule methods often rely on point spread functions that are tailored to interpret specific information. Here the authors use a neural network to extract complex PSF information from experimental images, and demonstrate this by classifying color and axial positions of emitters.