Information-rich localization microscopy through machine learning
Single-molecule methods often rely on point spread functions that are tailored to interpret specific information. Here the authors use a neural network to extract complex PSF information from experimental images, and demonstrate this by classifying color and axial positions of emitters.
Guardado en:
Autores principales: | Taehwan Kim, Seonah Moon, Ke Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d16a8683e3b8455ab94be76774f148ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for cluster analysis of localization microscopy data
por: David J. Williamson, et al.
Publicado: (2020) -
Dysgraphia detection through machine learning
por: Peter Drotár, et al.
Publicado: (2020) -
A machine learning approach for online automated optimization of super-resolution optical microscopy
por: Audrey Durand, et al.
Publicado: (2018) -
Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning
por: Diane N. H. Kim, et al.
Publicado: (2021) -
Two-step machine learning method for the rapid analysis of microvascular flow in intravital video microscopy
por: Ossama Mahmoud, et al.
Publicado: (2021)