Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix

Abstract Bismuth sesquioxide ( $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 ) draws much attention due to wide variety of phases in which it exists depending on the temperature. Among them, $$\delta$$ δ phase is specially interesting because of its high oxide ion conductivity and prospects of applications a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tomasz K. Pietrzak, Agata Jarocka, Cezariusz Jastrzębski, Tomasz Płociński, Marek Wasiucionek, Jerzy E. Garbarczyk
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d16cce63c110433a816f9df30d1e3bd7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d16cce63c110433a816f9df30d1e3bd7
record_format dspace
spelling oai:doaj.org-article:d16cce63c110433a816f9df30d1e3bd72021-12-02T17:37:35ZFacile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix10.1038/s41598-021-98435-52045-2322https://doaj.org/article/d16cce63c110433a816f9df30d1e3bd72021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98435-5https://doaj.org/toc/2045-2322Abstract Bismuth sesquioxide ( $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 ) draws much attention due to wide variety of phases in which it exists depending on the temperature. Among them, $$\delta$$ δ phase is specially interesting because of its high oxide ion conductivity and prospects of applications as an electrolyte in fuel cells. Unfortunately, it is stable only in a narrow temperature range ca. 730–830 $$^{\circ }$$ ∘ C. Our group has developed a facile and reproducible two-stage method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 crystalline phases confined in nanocrystallites embedded in amorphous matrix. In the first stage, glassy materials were obtained by a routine melt-quenching method: pure $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 powders were melted in porcelain crucibles and fast-cooled down to room temperature. In the second step, the materials were appropriately heat-treated to induce formation of crystallites of $$\beta$$ β , $$\delta$$ δ or $$\gamma$$ γ $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in a glassy matrix, depending on the process conditions. It was found out that the vitrification of the initial $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 and the subsequent nanocrystallization were unexpectedly possible due to the presence of some Al, and Si impurities from the crucibles. Systematic DTA, XRD, optical, Raman and SEM/EDS studies were carried out to investigate the influence of the syntheses processes and allowed us to determine conditions under which the particular phases appear and remain stable down to room temperature.Tomasz K. PietrzakAgata JarockaCezariusz JastrzębskiTomasz PłocińskiMarek WasiucionekJerzy E. GarbarczykNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tomasz K. Pietrzak
Agata Jarocka
Cezariusz Jastrzębski
Tomasz Płociński
Marek Wasiucionek
Jerzy E. Garbarczyk
Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix
description Abstract Bismuth sesquioxide ( $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 ) draws much attention due to wide variety of phases in which it exists depending on the temperature. Among them, $$\delta$$ δ phase is specially interesting because of its high oxide ion conductivity and prospects of applications as an electrolyte in fuel cells. Unfortunately, it is stable only in a narrow temperature range ca. 730–830 $$^{\circ }$$ ∘ C. Our group has developed a facile and reproducible two-stage method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 crystalline phases confined in nanocrystallites embedded in amorphous matrix. In the first stage, glassy materials were obtained by a routine melt-quenching method: pure $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 powders were melted in porcelain crucibles and fast-cooled down to room temperature. In the second step, the materials were appropriately heat-treated to induce formation of crystallites of $$\beta$$ β , $$\delta$$ δ or $$\gamma$$ γ $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in a glassy matrix, depending on the process conditions. It was found out that the vitrification of the initial $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 and the subsequent nanocrystallization were unexpectedly possible due to the presence of some Al, and Si impurities from the crucibles. Systematic DTA, XRD, optical, Raman and SEM/EDS studies were carried out to investigate the influence of the syntheses processes and allowed us to determine conditions under which the particular phases appear and remain stable down to room temperature.
format article
author Tomasz K. Pietrzak
Agata Jarocka
Cezariusz Jastrzębski
Tomasz Płociński
Marek Wasiucionek
Jerzy E. Garbarczyk
author_facet Tomasz K. Pietrzak
Agata Jarocka
Cezariusz Jastrzębski
Tomasz Płociński
Marek Wasiucionek
Jerzy E. Garbarczyk
author_sort Tomasz K. Pietrzak
title Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix
title_short Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix
title_full Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix
title_fullStr Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix
title_full_unstemmed Facile and reproducible method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in nanocrystallites embedded in amorphous matrix
title_sort facile and reproducible method of stabilizing $$\hbox {bi}_2\hbox {o}_3$$ bi 2 o 3 phases confined in nanocrystallites embedded in amorphous matrix
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d16cce63c110433a816f9df30d1e3bd7
work_keys_str_mv AT tomaszkpietrzak facileandreproduciblemethodofstabilizinghboxbi2hboxo3bi2o3phasesconfinedinnanocrystallitesembeddedinamorphousmatrix
AT agatajarocka facileandreproduciblemethodofstabilizinghboxbi2hboxo3bi2o3phasesconfinedinnanocrystallitesembeddedinamorphousmatrix
AT cezariuszjastrzebski facileandreproduciblemethodofstabilizinghboxbi2hboxo3bi2o3phasesconfinedinnanocrystallitesembeddedinamorphousmatrix
AT tomaszpłocinski facileandreproduciblemethodofstabilizinghboxbi2hboxo3bi2o3phasesconfinedinnanocrystallitesembeddedinamorphousmatrix
AT marekwasiucionek facileandreproduciblemethodofstabilizinghboxbi2hboxo3bi2o3phasesconfinedinnanocrystallitesembeddedinamorphousmatrix
AT jerzyegarbarczyk facileandreproduciblemethodofstabilizinghboxbi2hboxo3bi2o3phasesconfinedinnanocrystallitesembeddedinamorphousmatrix
_version_ 1718379910638075904