Stability analysis for Selkov-Schnakenberg reaction-diffusion system

This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Al Noufaey K. S.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/d179551fbb2f48989343526bd0c8d680
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d179551fbb2f48989343526bd0c8d680
record_format dspace
spelling oai:doaj.org-article:d179551fbb2f48989343526bd0c8d6802021-12-05T14:10:52ZStability analysis for Selkov-Schnakenberg reaction-diffusion system2391-545510.1515/math-2021-0008https://doaj.org/article/d179551fbb2f48989343526bd0c8d6802021-03-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0008https://doaj.org/toc/2391-5455This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions are delineated using bifurcation diagram analysis. The influence of the diffusion coefficients as they change, on the system stability is examined. Near the Hopf bifurcation point, the asymptotic analysis is developed for the oscillatory solution. The semi-analytical model solutions agree accurately with the numerical results.Al Noufaey K. S.De Gruyterarticleselkov-schnakenberg modelsingularity theoryhopf bifurcationsemi-analytical solutionslindstedt-poincaré method34-xx35-xx37-xx65-xxMathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 46-62 (2021)
institution DOAJ
collection DOAJ
language EN
topic selkov-schnakenberg model
singularity theory
hopf bifurcation
semi-analytical solutions
lindstedt-poincaré method
34-xx
35-xx
37-xx
65-xx
Mathematics
QA1-939
spellingShingle selkov-schnakenberg model
singularity theory
hopf bifurcation
semi-analytical solutions
lindstedt-poincaré method
34-xx
35-xx
37-xx
65-xx
Mathematics
QA1-939
Al Noufaey K. S.
Stability analysis for Selkov-Schnakenberg reaction-diffusion system
description This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions are delineated using bifurcation diagram analysis. The influence of the diffusion coefficients as they change, on the system stability is examined. Near the Hopf bifurcation point, the asymptotic analysis is developed for the oscillatory solution. The semi-analytical model solutions agree accurately with the numerical results.
format article
author Al Noufaey K. S.
author_facet Al Noufaey K. S.
author_sort Al Noufaey K. S.
title Stability analysis for Selkov-Schnakenberg reaction-diffusion system
title_short Stability analysis for Selkov-Schnakenberg reaction-diffusion system
title_full Stability analysis for Selkov-Schnakenberg reaction-diffusion system
title_fullStr Stability analysis for Selkov-Schnakenberg reaction-diffusion system
title_full_unstemmed Stability analysis for Selkov-Schnakenberg reaction-diffusion system
title_sort stability analysis for selkov-schnakenberg reaction-diffusion system
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/d179551fbb2f48989343526bd0c8d680
work_keys_str_mv AT alnoufaeyks stabilityanalysisforselkovschnakenbergreactiondiffusionsystem
_version_ 1718371654272286720