Stability analysis for Selkov-Schnakenberg reaction-diffusion system
This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d179551fbb2f48989343526bd0c8d680 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d179551fbb2f48989343526bd0c8d680 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d179551fbb2f48989343526bd0c8d6802021-12-05T14:10:52ZStability analysis for Selkov-Schnakenberg reaction-diffusion system2391-545510.1515/math-2021-0008https://doaj.org/article/d179551fbb2f48989343526bd0c8d6802021-03-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0008https://doaj.org/toc/2391-5455This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions are delineated using bifurcation diagram analysis. The influence of the diffusion coefficients as they change, on the system stability is examined. Near the Hopf bifurcation point, the asymptotic analysis is developed for the oscillatory solution. The semi-analytical model solutions agree accurately with the numerical results.Al Noufaey K. S.De Gruyterarticleselkov-schnakenberg modelsingularity theoryhopf bifurcationsemi-analytical solutionslindstedt-poincaré method34-xx35-xx37-xx65-xxMathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 46-62 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
selkov-schnakenberg model singularity theory hopf bifurcation semi-analytical solutions lindstedt-poincaré method 34-xx 35-xx 37-xx 65-xx Mathematics QA1-939 |
spellingShingle |
selkov-schnakenberg model singularity theory hopf bifurcation semi-analytical solutions lindstedt-poincaré method 34-xx 35-xx 37-xx 65-xx Mathematics QA1-939 Al Noufaey K. S. Stability analysis for Selkov-Schnakenberg reaction-diffusion system |
description |
This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions are delineated using bifurcation diagram analysis. The influence of the diffusion coefficients as they change, on the system stability is examined. Near the Hopf bifurcation point, the asymptotic analysis is developed for the oscillatory solution. The semi-analytical model solutions agree accurately with the numerical results. |
format |
article |
author |
Al Noufaey K. S. |
author_facet |
Al Noufaey K. S. |
author_sort |
Al Noufaey K. S. |
title |
Stability analysis for Selkov-Schnakenberg reaction-diffusion system |
title_short |
Stability analysis for Selkov-Schnakenberg reaction-diffusion system |
title_full |
Stability analysis for Selkov-Schnakenberg reaction-diffusion system |
title_fullStr |
Stability analysis for Selkov-Schnakenberg reaction-diffusion system |
title_full_unstemmed |
Stability analysis for Selkov-Schnakenberg reaction-diffusion system |
title_sort |
stability analysis for selkov-schnakenberg reaction-diffusion system |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/d179551fbb2f48989343526bd0c8d680 |
work_keys_str_mv |
AT alnoufaeyks stabilityanalysisforselkovschnakenbergreactiondiffusionsystem |
_version_ |
1718371654272286720 |